基于分子动力学模拟的蛋白质和有机聚合物水溶液的介电常数。

Susanne Liese, Alexander Schlaich, R. Netz
{"title":"基于分子动力学模拟的蛋白质和有机聚合物水溶液的介电常数。","authors":"Susanne Liese, Alexander Schlaich, R. Netz","doi":"10.1063/5.0089397","DOIUrl":null,"url":null,"abstract":"The dielectric constant of water/oligomer mixtures, spanning the range from pure water to pure oligomeric melts, is investigated using molecular dynamics (MD) simulations. As prototypical water-soluble organic substances, we consider neutral poly-glycine, poly-ethylene glycol, and charged monomeric propionic acid. As the water content is reduced, the dielectric constant decreases but does not follow an ideal mixing behavior. The deviations from ideal mixing originate primarily in the non-linear relation between the oligomer mass fraction and collective polarization effects. We find that the dielectric constant is dominated by water polarization, even if the oligomer mass fraction exceeds 50%. By a double extrapolation of the MD simulation results to the limit of vanishing water fraction and to the limit of infinite oligomeric chain length, we estimate the orientational contribution to the dielectric constant of the pure polymeric melts. By this procedure, we obtain ɛ = 17 ± 2 for polyglycine and ɛ = 1 ± 0.3 for polyethylene glycol. The large difference is rationalized by polarization correlations of glycine units. Interestingly, we find constant temperature simulations to outperform replica exchange simulations in terms of equilibration speed.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dielectric constant of aqueous solutions of proteins and organic polymers from molecular dynamics simulations.\",\"authors\":\"Susanne Liese, Alexander Schlaich, R. Netz\",\"doi\":\"10.1063/5.0089397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dielectric constant of water/oligomer mixtures, spanning the range from pure water to pure oligomeric melts, is investigated using molecular dynamics (MD) simulations. As prototypical water-soluble organic substances, we consider neutral poly-glycine, poly-ethylene glycol, and charged monomeric propionic acid. As the water content is reduced, the dielectric constant decreases but does not follow an ideal mixing behavior. The deviations from ideal mixing originate primarily in the non-linear relation between the oligomer mass fraction and collective polarization effects. We find that the dielectric constant is dominated by water polarization, even if the oligomer mass fraction exceeds 50%. By a double extrapolation of the MD simulation results to the limit of vanishing water fraction and to the limit of infinite oligomeric chain length, we estimate the orientational contribution to the dielectric constant of the pure polymeric melts. By this procedure, we obtain ɛ = 17 ± 2 for polyglycine and ɛ = 1 ± 0.3 for polyethylene glycol. The large difference is rationalized by polarization correlations of glycine units. Interestingly, we find constant temperature simulations to outperform replica exchange simulations in terms of equilibration speed.\",\"PeriodicalId\":446961,\"journal\":{\"name\":\"The Journal of chemical physics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of chemical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0089397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of chemical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0089397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用分子动力学(MD)模拟研究了从纯水到纯低聚物熔体的水/低聚物混合物的介电常数。作为典型的水溶性有机物质,我们考虑中性聚甘氨酸、聚乙二醇和带电单体丙酸。随着水含量的降低,介电常数降低,但不遵循理想的混合行为。与理想混合的偏差主要源于低聚物质量分数与集体极化效应之间的非线性关系。我们发现,即使低聚物的质量分数超过50%,介质常数仍受水极化的支配。通过双外推MD模拟结果到消失水分数的极限和无限低聚物链长的极限,我们估计了取向对纯聚合物熔体介电常数的贡献。用此方法得到聚甘氨酸的ε = 17±2,聚乙二醇的ε = 1±0.3。较大的差异是由甘氨酸单位的极化相关性来解释的。有趣的是,我们发现恒温模拟在平衡速度方面优于副本交换模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dielectric constant of aqueous solutions of proteins and organic polymers from molecular dynamics simulations.
The dielectric constant of water/oligomer mixtures, spanning the range from pure water to pure oligomeric melts, is investigated using molecular dynamics (MD) simulations. As prototypical water-soluble organic substances, we consider neutral poly-glycine, poly-ethylene glycol, and charged monomeric propionic acid. As the water content is reduced, the dielectric constant decreases but does not follow an ideal mixing behavior. The deviations from ideal mixing originate primarily in the non-linear relation between the oligomer mass fraction and collective polarization effects. We find that the dielectric constant is dominated by water polarization, even if the oligomer mass fraction exceeds 50%. By a double extrapolation of the MD simulation results to the limit of vanishing water fraction and to the limit of infinite oligomeric chain length, we estimate the orientational contribution to the dielectric constant of the pure polymeric melts. By this procedure, we obtain ɛ = 17 ± 2 for polyglycine and ɛ = 1 ± 0.3 for polyethylene glycol. The large difference is rationalized by polarization correlations of glycine units. Interestingly, we find constant temperature simulations to outperform replica exchange simulations in terms of equilibration speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信