在基于深度学习的设计规则违反预测中处理非确定性的随机方法

Rongjian Liang, Hua Xiang, Jinwook Jung, Jiang Hu, Gi-Joon Nam
{"title":"在基于深度学习的设计规则违反预测中处理非确定性的随机方法","authors":"Rongjian Liang, Hua Xiang, Jinwook Jung, Jiang Hu, Gi-Joon Nam","doi":"10.1145/3508352.3549347","DOIUrl":null,"url":null,"abstract":"Deep learning is a promising approach to early DRV (Design Rule Violation) prediction. However, non-deterministic parallel routing hampers model training and degrades prediction accuracy. In this work, we propose a stochastic approach, called LGC-Net, to solve this problem. In this approach, we develop new techniques of Gaussian random field layer and focal likelihood loss function to seamlessly integrate Log Gaussian Cox process with deep learning. This approach provides not only statistical regression results but also classification ones with different thresholds without retraining. Experimental results with noisy training data on industrial designs demonstrate that LGC-Net achieves significantly better accuracy of DRV density prediction than prior arts.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Stochastic Approach to Handle Non-Determinism in Deep Learning-Based Design Rule Violation Predictions\",\"authors\":\"Rongjian Liang, Hua Xiang, Jinwook Jung, Jiang Hu, Gi-Joon Nam\",\"doi\":\"10.1145/3508352.3549347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a promising approach to early DRV (Design Rule Violation) prediction. However, non-deterministic parallel routing hampers model training and degrades prediction accuracy. In this work, we propose a stochastic approach, called LGC-Net, to solve this problem. In this approach, we develop new techniques of Gaussian random field layer and focal likelihood loss function to seamlessly integrate Log Gaussian Cox process with deep learning. This approach provides not only statistical regression results but also classification ones with different thresholds without retraining. Experimental results with noisy training data on industrial designs demonstrate that LGC-Net achieves significantly better accuracy of DRV density prediction than prior arts.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度学习是一种很有前途的早期DRV(设计规则违反)预测方法。然而,不确定性并行路由阻碍了模型训练,降低了预测精度。在这项工作中,我们提出了一种称为LGC-Net的随机方法来解决这个问题。在这种方法中,我们开发了高斯随机场层和焦点似然损失函数的新技术,将Log高斯Cox过程与深度学习无缝集成。该方法不仅可以提供统计回归结果,还可以在不进行再训练的情况下提供不同阈值的分类结果。工业品外观设计噪声训练数据的实验结果表明,LGC-Net对DRV密度的预测精度明显优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stochastic Approach to Handle Non-Determinism in Deep Learning-Based Design Rule Violation Predictions
Deep learning is a promising approach to early DRV (Design Rule Violation) prediction. However, non-deterministic parallel routing hampers model training and degrades prediction accuracy. In this work, we propose a stochastic approach, called LGC-Net, to solve this problem. In this approach, we develop new techniques of Gaussian random field layer and focal likelihood loss function to seamlessly integrate Log Gaussian Cox process with deep learning. This approach provides not only statistical regression results but also classification ones with different thresholds without retraining. Experimental results with noisy training data on industrial designs demonstrate that LGC-Net achieves significantly better accuracy of DRV density prediction than prior arts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信