基于知识过滤和注意力记忆指针的端到端任务导向对话系统

Mengjuan Liu, Jiang Liu, Chenyang Liu, Luyao Chen, Kuo-Hui Yeh
{"title":"基于知识过滤和注意力记忆指针的端到端任务导向对话系统","authors":"Mengjuan Liu, Jiang Liu, Chenyang Liu, Luyao Chen, Kuo-Hui Yeh","doi":"10.1109/ISPCE-ASIA57917.2022.9970837","DOIUrl":null,"url":null,"abstract":"The end-to-end neural model provides a more robust solution to generate responses than the traditional pipe-line method in the task-oriented dialogue system. However, it is challenging to incorporate the proper knowledge into the gen-erated response, especially when there are substantially related knowledge tuples. This paper proposes a knowledge filter and an attention memory pointer to improve the task-oriented dia-logue model. Specifically, the model uses the knowledge filter to obtain the knowledge tuples most relevant to the keywords of dialog context and builds the knowledge vector. Besides, the task-oriented dialogue model usually needs to copy objects from the correct knowledge tuples to form the question's an-swer. We define an attention memory pointer to help the model choose the correct knowledge tuples. Finally, we conduct ex-periments on the In-Car Assistant dataset. The experimental results show that our model can generate more accurate re-sponses than baseline models in automatic and human evaluations.","PeriodicalId":197173,"journal":{"name":"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-to-End Task-oriented Dialogue System Using Knowledge Filter and Attention Memory Pointer\",\"authors\":\"Mengjuan Liu, Jiang Liu, Chenyang Liu, Luyao Chen, Kuo-Hui Yeh\",\"doi\":\"10.1109/ISPCE-ASIA57917.2022.9970837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The end-to-end neural model provides a more robust solution to generate responses than the traditional pipe-line method in the task-oriented dialogue system. However, it is challenging to incorporate the proper knowledge into the gen-erated response, especially when there are substantially related knowledge tuples. This paper proposes a knowledge filter and an attention memory pointer to improve the task-oriented dia-logue model. Specifically, the model uses the knowledge filter to obtain the knowledge tuples most relevant to the keywords of dialog context and builds the knowledge vector. Besides, the task-oriented dialogue model usually needs to copy objects from the correct knowledge tuples to form the question's an-swer. We define an attention memory pointer to help the model choose the correct knowledge tuples. Finally, we conduct ex-periments on the In-Car Assistant dataset. The experimental results show that our model can generate more accurate re-sponses than baseline models in automatic and human evaluations.\",\"PeriodicalId\":197173,\"journal\":{\"name\":\"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCE-ASIA57917.2022.9970837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCE-ASIA57917.2022.9970837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在面向任务的对话系统中,端到端神经模型提供了比传统管道方法更鲁棒的响应生成解决方案。然而,将适当的知识合并到生成的响应中是具有挑战性的,特别是当存在大量相关的知识元组时。本文提出了一个知识过滤器和一个注意力记忆指针来改进面向任务的对话模型。具体来说,该模型使用知识过滤器获取与对话上下文关键字最相关的知识元组,并构建知识向量。此外,面向任务的对话模型通常需要从正确的知识元组中复制对象来形成问题的答案。我们定义了一个注意力记忆指针来帮助模型选择正确的知识元组。最后,我们在In-Car Assistant数据集上进行了实验。实验结果表明,在自动评估和人工评估中,我们的模型比基线模型产生更准确的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-End Task-oriented Dialogue System Using Knowledge Filter and Attention Memory Pointer
The end-to-end neural model provides a more robust solution to generate responses than the traditional pipe-line method in the task-oriented dialogue system. However, it is challenging to incorporate the proper knowledge into the gen-erated response, especially when there are substantially related knowledge tuples. This paper proposes a knowledge filter and an attention memory pointer to improve the task-oriented dia-logue model. Specifically, the model uses the knowledge filter to obtain the knowledge tuples most relevant to the keywords of dialog context and builds the knowledge vector. Besides, the task-oriented dialogue model usually needs to copy objects from the correct knowledge tuples to form the question's an-swer. We define an attention memory pointer to help the model choose the correct knowledge tuples. Finally, we conduct ex-periments on the In-Car Assistant dataset. The experimental results show that our model can generate more accurate re-sponses than baseline models in automatic and human evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信