具有自适应状态聚合的马尔可夫决策过程学习算法

J. Baras, V. Borkar
{"title":"具有自适应状态聚合的马尔可夫决策过程学习算法","authors":"J. Baras, V. Borkar","doi":"10.1109/CDC.2000.912220","DOIUrl":null,"url":null,"abstract":"We propose a simulation-based algorithm for learning good policies for a Markov decision process with unknown transition law, with aggregated states. The state aggregation itself can be adapted on a slower time scale by an auxiliary learning algorithm. Rigorous justifications are provided for both algorithms.","PeriodicalId":217237,"journal":{"name":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A learning algorithm for Markov decision processes with adaptive state aggregation\",\"authors\":\"J. Baras, V. Borkar\",\"doi\":\"10.1109/CDC.2000.912220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simulation-based algorithm for learning good policies for a Markov decision process with unknown transition law, with aggregated states. The state aggregation itself can be adapted on a slower time scale by an auxiliary learning algorithm. Rigorous justifications are provided for both algorithms.\",\"PeriodicalId\":217237,\"journal\":{\"name\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2000.912220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2000.912220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们提出了一种基于仿真的马尔可夫决策过程学习策略的算法,该决策过程具有未知的转移律和聚合状态。状态聚合本身可以通过辅助学习算法在较慢的时间尺度上进行调整。为这两种算法提供了严格的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A learning algorithm for Markov decision processes with adaptive state aggregation
We propose a simulation-based algorithm for learning good policies for a Markov decision process with unknown transition law, with aggregated states. The state aggregation itself can be adapted on a slower time scale by an auxiliary learning algorithm. Rigorous justifications are provided for both algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信