SALoBa: gpu上快速序列对齐的最大化数据局部性和工作负载平衡

Seong-Bin Park, Hajin Kim, Tanveer Ahmad, Nauman Ahmed, Z. Al-Ars, H. P. Hofstee, Youngsok Kim, Jinho Lee
{"title":"SALoBa: gpu上快速序列对齐的最大化数据局部性和工作负载平衡","authors":"Seong-Bin Park, Hajin Kim, Tanveer Ahmad, Nauman Ahmed, Z. Al-Ars, H. P. Hofstee, Youngsok Kim, Jinho Lee","doi":"10.1109/ipdps53621.2022.00076","DOIUrl":null,"url":null,"abstract":"Sequence alignment forms an important backbone in many sequencing applications. A commonly used strategy for sequence alignment is an approximate string matching with a two-dimensional dynamic programming approach. Although some prior work has been conducted on GPU acceleration of a sequence alignment, we identify several shortcomings that limit exploiting the full computational capability of modern GPUs. This paper presents SALoBa, a GPU-accelerated sequence alignment library focused on seed extension. Based on the analysis of previous work with real-world sequencing data, we propose techniques to exploit the data locality and improve work-load balancing. The experimental results reveal that SALoBa significantly improves the seed extension kernel compared to state-of-the-art GPU-based methods.","PeriodicalId":321801,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SALoBa: Maximizing Data Locality and Workload Balance for Fast Sequence Alignment on GPUs\",\"authors\":\"Seong-Bin Park, Hajin Kim, Tanveer Ahmad, Nauman Ahmed, Z. Al-Ars, H. P. Hofstee, Youngsok Kim, Jinho Lee\",\"doi\":\"10.1109/ipdps53621.2022.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequence alignment forms an important backbone in many sequencing applications. A commonly used strategy for sequence alignment is an approximate string matching with a two-dimensional dynamic programming approach. Although some prior work has been conducted on GPU acceleration of a sequence alignment, we identify several shortcomings that limit exploiting the full computational capability of modern GPUs. This paper presents SALoBa, a GPU-accelerated sequence alignment library focused on seed extension. Based on the analysis of previous work with real-world sequencing data, we propose techniques to exploit the data locality and improve work-load balancing. The experimental results reveal that SALoBa significantly improves the seed extension kernel compared to state-of-the-art GPU-based methods.\",\"PeriodicalId\":321801,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ipdps53621.2022.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps53621.2022.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

序列比对是许多测序应用的重要支柱。一种常用的序列比对策略是用二维动态规划方法进行近似字符串匹配。虽然之前的一些工作已经在GPU加速序列对齐上进行了,但我们发现了几个限制利用现代GPU的全部计算能力的缺点。本文介绍了一种基于gpu加速的序列比对库SALoBa。在分析以往实际测序数据工作的基础上,我们提出了利用数据局部性和改善工作负载平衡的技术。实验结果表明,与最先进的基于gpu的方法相比,SALoBa显著改善了种子扩展核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SALoBa: Maximizing Data Locality and Workload Balance for Fast Sequence Alignment on GPUs
Sequence alignment forms an important backbone in many sequencing applications. A commonly used strategy for sequence alignment is an approximate string matching with a two-dimensional dynamic programming approach. Although some prior work has been conducted on GPU acceleration of a sequence alignment, we identify several shortcomings that limit exploiting the full computational capability of modern GPUs. This paper presents SALoBa, a GPU-accelerated sequence alignment library focused on seed extension. Based on the analysis of previous work with real-world sequencing data, we propose techniques to exploit the data locality and improve work-load balancing. The experimental results reveal that SALoBa significantly improves the seed extension kernel compared to state-of-the-art GPU-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信