{"title":"高斯电弧分布态的数相不确定性","authors":"S. Szabo, Z. Kis, P. Adam, J. Janszky","doi":"10.1088/0954-8998/6/6/003","DOIUrl":null,"url":null,"abstract":"A method is developed for constructing a (- pi , pi ) arc distribution function of one-dimensional coherent state superpositions on a circle from the (- infinity , infinity ) weight function. Changing the parameters of a Gaussian weight function superposition states with different amplitude-squeezed and number-phase uncertainty properties can be prepared.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Number-phase uncertainty properties of the Gaussian arc distribution state\",\"authors\":\"S. Szabo, Z. Kis, P. Adam, J. Janszky\",\"doi\":\"10.1088/0954-8998/6/6/003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is developed for constructing a (- pi , pi ) arc distribution function of one-dimensional coherent state superpositions on a circle from the (- infinity , infinity ) weight function. Changing the parameters of a Gaussian weight function superposition states with different amplitude-squeezed and number-phase uncertainty properties can be prepared.\",\"PeriodicalId\":130003,\"journal\":{\"name\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0954-8998/6/6/003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/6/6/003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Number-phase uncertainty properties of the Gaussian arc distribution state
A method is developed for constructing a (- pi , pi ) arc distribution function of one-dimensional coherent state superpositions on a circle from the (- infinity , infinity ) weight function. Changing the parameters of a Gaussian weight function superposition states with different amplitude-squeezed and number-phase uncertainty properties can be prepared.