基于数据驱动的上肢主动外骨骼负重预测控制研究

Alexandre Oliveira Souza, Jordane G. Grenier, F. Charpillet, P. Maurice, S. Ivaldi
{"title":"基于数据驱动的上肢主动外骨骼负重预测控制研究","authors":"Alexandre Oliveira Souza, Jordane G. Grenier, F. Charpillet, P. Maurice, S. Ivaldi","doi":"10.1109/ARSO56563.2023.10187548","DOIUrl":null,"url":null,"abstract":"Upper-limb active exoskeletons are a promising technology to reduce musculoskeletal disorders in the context of load-carrying activities. To assist the user on time, it is crucial to predict the assistance torque required for the future intended movement. In this paper, we propose to predict such a torque with predictive models trained on simulated data. We generate exoskeleton sensor data for training learning-based prediction models from human motion capture data. We design a Quadratic Programming control problem for the exoskeleton to track the human body across its movements. From the data generated using this simulation method, we train two torque command prediction methods for transparent control and load carrying. We show that exoskeleton torque command can be predicted with a relative error below 5% at a horizon of 100ms.","PeriodicalId":382832,"journal":{"name":"2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards data-driven predictive control of active upper-body exoskeletons for load carrying\",\"authors\":\"Alexandre Oliveira Souza, Jordane G. Grenier, F. Charpillet, P. Maurice, S. Ivaldi\",\"doi\":\"10.1109/ARSO56563.2023.10187548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upper-limb active exoskeletons are a promising technology to reduce musculoskeletal disorders in the context of load-carrying activities. To assist the user on time, it is crucial to predict the assistance torque required for the future intended movement. In this paper, we propose to predict such a torque with predictive models trained on simulated data. We generate exoskeleton sensor data for training learning-based prediction models from human motion capture data. We design a Quadratic Programming control problem for the exoskeleton to track the human body across its movements. From the data generated using this simulation method, we train two torque command prediction methods for transparent control and load carrying. We show that exoskeleton torque command can be predicted with a relative error below 5% at a horizon of 100ms.\",\"PeriodicalId\":382832,\"journal\":{\"name\":\"2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARSO56563.2023.10187548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO56563.2023.10187548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上肢主动外骨骼是一种很有前途的技术,可以在负重活动的情况下减少肌肉骨骼疾病。为了及时帮助用户,预测未来预期运动所需的辅助扭矩至关重要。在本文中,我们建议用模拟数据训练的预测模型来预测这种扭矩。我们从人体动作捕捉数据中生成外骨骼传感器数据,用于训练基于学习的预测模型。我们设计了一个二次规划控制问题,用于外骨骼跟踪人体的运动。根据该仿真方法生成的数据,我们训练了透明控制和承载两种转矩命令预测方法。研究表明,在100ms视界下,外骨骼扭矩指令的预测相对误差低于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards data-driven predictive control of active upper-body exoskeletons for load carrying
Upper-limb active exoskeletons are a promising technology to reduce musculoskeletal disorders in the context of load-carrying activities. To assist the user on time, it is crucial to predict the assistance torque required for the future intended movement. In this paper, we propose to predict such a torque with predictive models trained on simulated data. We generate exoskeleton sensor data for training learning-based prediction models from human motion capture data. We design a Quadratic Programming control problem for the exoskeleton to track the human body across its movements. From the data generated using this simulation method, we train two torque command prediction methods for transparent control and load carrying. We show that exoskeleton torque command can be predicted with a relative error below 5% at a horizon of 100ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信