毫米波能量收集整流器PCE估计中不同机器学习技术的比较

D. Díaz, Esteban Toledo-Mercado, I. Soto, David Zabala-Blanco, S. Gutiérrez
{"title":"毫米波能量收集整流器PCE估计中不同机器学习技术的比较","authors":"D. Díaz, Esteban Toledo-Mercado, I. Soto, David Zabala-Blanco, S. Gutiérrez","doi":"10.1109/SACVLC53127.2021.9652358","DOIUrl":null,"url":null,"abstract":"Power conversion efficiency (PCE) is one of, if not, the most important metric in energy conversion systems, it predicts the energy output of a device, given its input. In radio frequency (RF) energy harvesting (EH) devices, the energy in electromagnetic (EM) waves is captured and turned into a stable low power energy source for various uses, a key component in this process is the harvester's rectifier, of which, its non linear behavior greatly increases the complexity of PCE estimation, making approximate models inaccurate, and precise models extremely complex. This is why, in this work, a set of simpler solutions, for rectifier's device PCE estimation are proposed. Through the use of data science and Machine Learning, Support Vector Regressor (SVR), Random Forest Regressor (RFR), and Neural Network (NN) models are trained and compared, using mean square error and absolute mean error as metrics for validity, obtaining a viable model and defined steps for improvement.","PeriodicalId":235918,"journal":{"name":"2021 Third South American Colloquium on Visible Light Communications (SACVLC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of different Machine Learning techniques for PCE estimation of MMWave Energy Harvesting Rectifier devices\",\"authors\":\"D. Díaz, Esteban Toledo-Mercado, I. Soto, David Zabala-Blanco, S. Gutiérrez\",\"doi\":\"10.1109/SACVLC53127.2021.9652358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power conversion efficiency (PCE) is one of, if not, the most important metric in energy conversion systems, it predicts the energy output of a device, given its input. In radio frequency (RF) energy harvesting (EH) devices, the energy in electromagnetic (EM) waves is captured and turned into a stable low power energy source for various uses, a key component in this process is the harvester's rectifier, of which, its non linear behavior greatly increases the complexity of PCE estimation, making approximate models inaccurate, and precise models extremely complex. This is why, in this work, a set of simpler solutions, for rectifier's device PCE estimation are proposed. Through the use of data science and Machine Learning, Support Vector Regressor (SVR), Random Forest Regressor (RFR), and Neural Network (NN) models are trained and compared, using mean square error and absolute mean error as metrics for validity, obtaining a viable model and defined steps for improvement.\",\"PeriodicalId\":235918,\"journal\":{\"name\":\"2021 Third South American Colloquium on Visible Light Communications (SACVLC)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Third South American Colloquium on Visible Light Communications (SACVLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACVLC53127.2021.9652358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third South American Colloquium on Visible Light Communications (SACVLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACVLC53127.2021.9652358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

功率转换效率(PCE)是能量转换系统中最重要的度量之一,它预测了给定设备输入的能量输出。在射频(RF)能量收集(EH)设备中,电磁(EM)波中的能量被捕获并转化为稳定的低功率能量源,用于各种用途,在这一过程中的关键部件是采集器的整流器,其非线性特性大大增加了PCE估计的复杂性,使近似模型不准确,精确模型极其复杂。这就是为什么在这项工作中,提出了一套更简单的解决方案,用于整流器器件的PCE估计。通过使用数据科学和机器学习,支持向量回归器(SVR),随机森林回归器(RFR)和神经网络(NN)模型进行训练和比较,使用均方误差和绝对平均误差作为有效性的度量,获得可行的模型和定义的改进步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of different Machine Learning techniques for PCE estimation of MMWave Energy Harvesting Rectifier devices
Power conversion efficiency (PCE) is one of, if not, the most important metric in energy conversion systems, it predicts the energy output of a device, given its input. In radio frequency (RF) energy harvesting (EH) devices, the energy in electromagnetic (EM) waves is captured and turned into a stable low power energy source for various uses, a key component in this process is the harvester's rectifier, of which, its non linear behavior greatly increases the complexity of PCE estimation, making approximate models inaccurate, and precise models extremely complex. This is why, in this work, a set of simpler solutions, for rectifier's device PCE estimation are proposed. Through the use of data science and Machine Learning, Support Vector Regressor (SVR), Random Forest Regressor (RFR), and Neural Network (NN) models are trained and compared, using mean square error and absolute mean error as metrics for validity, obtaining a viable model and defined steps for improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信