粒子滤波中自适应粒子数的一种新算法

V. Elvira, J. Míguez, P. Djurić
{"title":"粒子滤波中自适应粒子数的一种新算法","authors":"V. Elvira, J. Míguez, P. Djurić","doi":"10.1109/SAM.2016.7569688","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach for assessing the convergence of particle filters in online manner. Particle filters sequentially approximate distributions of hidden states of state-space models. The approximations are random measures composed of weighted particles (i.e., samples of the state). A sufficiently large number of particles provides a good quality in the approximation but at the expense of increasing the computational load. We propose to adapt the number of particles in real time based on the convergence assessment of the particle filter. The proposed methodology is based on a model-independent theoretical analysis that is valid under mild assumptions. We present an algorithm that allows the practitioner to operate at a desirable operation point defined by a performance-complexity tradeoff. The algorithm has a small extra cost, and it shows good performance in our numerical simulations.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"39 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel algorithm for adapting the number of particles in particle filtering\",\"authors\":\"V. Elvira, J. Míguez, P. Djurić\",\"doi\":\"10.1109/SAM.2016.7569688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel approach for assessing the convergence of particle filters in online manner. Particle filters sequentially approximate distributions of hidden states of state-space models. The approximations are random measures composed of weighted particles (i.e., samples of the state). A sufficiently large number of particles provides a good quality in the approximation but at the expense of increasing the computational load. We propose to adapt the number of particles in real time based on the convergence assessment of the particle filter. The proposed methodology is based on a model-independent theoretical analysis that is valid under mild assumptions. We present an algorithm that allows the practitioner to operate at a desirable operation point defined by a performance-complexity tradeoff. The algorithm has a small extra cost, and it shows good performance in our numerical simulations.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"39 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种在线评估粒子滤波器收敛性的新方法。粒子滤波器依次逼近状态空间模型的隐藏状态分布。近似是由加权粒子(即状态的样本)组成的随机度量。足够大的粒子数量提供了良好的近似质量,但代价是增加了计算负荷。我们提出在粒子滤波收敛性评估的基础上实时调整粒子数。提出的方法是基于模型独立的理论分析,在温和的假设下是有效的。我们提出了一种算法,该算法允许实践者在由性能复杂性权衡定义的理想操作点上操作。该算法的额外开销很小,在数值模拟中显示出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel algorithm for adapting the number of particles in particle filtering
In this paper, we propose a novel approach for assessing the convergence of particle filters in online manner. Particle filters sequentially approximate distributions of hidden states of state-space models. The approximations are random measures composed of weighted particles (i.e., samples of the state). A sufficiently large number of particles provides a good quality in the approximation but at the expense of increasing the computational load. We propose to adapt the number of particles in real time based on the convergence assessment of the particle filter. The proposed methodology is based on a model-independent theoretical analysis that is valid under mild assumptions. We present an algorithm that allows the practitioner to operate at a desirable operation point defined by a performance-complexity tradeoff. The algorithm has a small extra cost, and it shows good performance in our numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信