计的交互

J. Iliopoulos, T. Tomaras
{"title":"计的交互","authors":"J. Iliopoulos, T. Tomaras","doi":"10.1093/oso/9780192844200.003.0013","DOIUrl":null,"url":null,"abstract":"The principle of gauge symmetry is introduced as a consequence of the invariance of the equations of motion under local transformations. We apply it to Abelian, as well as non-Abelian, internal symmetry groups. We derive in this way the Lagrangian of quantum electrodynamics and that of Yang–Mills theories. We quantise the latter using the path integral method and show the need for unphysical Faddeev–Popov ghost fields. We exhibit the geometric properties of the theory by formulating it on a discrete space-time lattice. We show that matter fields live on lattice sites and gauge fields on oriented lattice links. The Yang–Mills field strength is related to the curvature in field space.","PeriodicalId":285777,"journal":{"name":"Elementary Particle Physics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauge Interactions\",\"authors\":\"J. Iliopoulos, T. Tomaras\",\"doi\":\"10.1093/oso/9780192844200.003.0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principle of gauge symmetry is introduced as a consequence of the invariance of the equations of motion under local transformations. We apply it to Abelian, as well as non-Abelian, internal symmetry groups. We derive in this way the Lagrangian of quantum electrodynamics and that of Yang–Mills theories. We quantise the latter using the path integral method and show the need for unphysical Faddeev–Popov ghost fields. We exhibit the geometric properties of the theory by formulating it on a discrete space-time lattice. We show that matter fields live on lattice sites and gauge fields on oriented lattice links. The Yang–Mills field strength is related to the curvature in field space.\",\"PeriodicalId\":285777,\"journal\":{\"name\":\"Elementary Particle Physics\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementary Particle Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192844200.003.0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementary Particle Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192844200.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于运动方程在局部变换下的不变性,引入了规范对称原理。我们将它应用于阿贝尔,以及非阿贝尔,内部对称群。我们用这种方法推导出量子电动力学的拉格朗日量和杨-米尔斯理论的拉格朗日量。我们使用路径积分方法量化后者,并证明需要非物理的Faddeev-Popov鬼场。我们通过在离散时空晶格上表述该理论来展示其几何性质。我们证明了物质场存在于晶格点上,规范场存在于取向晶格链路上。杨-米尔斯场强与场空间曲率有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauge Interactions
The principle of gauge symmetry is introduced as a consequence of the invariance of the equations of motion under local transformations. We apply it to Abelian, as well as non-Abelian, internal symmetry groups. We derive in this way the Lagrangian of quantum electrodynamics and that of Yang–Mills theories. We quantise the latter using the path integral method and show the need for unphysical Faddeev–Popov ghost fields. We exhibit the geometric properties of the theory by formulating it on a discrete space-time lattice. We show that matter fields live on lattice sites and gauge fields on oriented lattice links. The Yang–Mills field strength is related to the curvature in field space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信