面向属性条件人脸合成的注意条件通道递归自编码

Wenling Shang, Kihyuk Sohn
{"title":"面向属性条件人脸合成的注意条件通道递归自编码","authors":"Wenling Shang, Kihyuk Sohn","doi":"10.1109/WACV.2019.00168","DOIUrl":null,"url":null,"abstract":"Attribute-conditioned face synthesis has many potential use cases, such as to aid the identification of a suspect or a missing person. Building on top of a conditional version of VAE-GAN, we augment the pathways connecting the latent space with channel-recurrent architecture, in order to provide not only improved generation qualities but also interpretable high-level features. In particular, to better achieve the latter, we further propose an attention mechanism over each attribute to indicate the specific latent subset responsible for its modulation. Thanks to the latent semantics formed via the channel-recurreny, we envision a tool that takes the desired attributes as inputs and then performs a 2-stage general-to-specific generation of diverse and realistic faces. Lastly, we incorporate the progressive-growth training scheme to the inference, generation and discriminator networks of our models to facilitate higher resolution outputs. Evaluations are performed through both qualitative visual examination and quantitative metrics, namely inception scores, human preferences, and attribute classification accuracy.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attentive Conditional Channel-Recurrent Autoencoding for Attribute-Conditioned Face Synthesis\",\"authors\":\"Wenling Shang, Kihyuk Sohn\",\"doi\":\"10.1109/WACV.2019.00168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attribute-conditioned face synthesis has many potential use cases, such as to aid the identification of a suspect or a missing person. Building on top of a conditional version of VAE-GAN, we augment the pathways connecting the latent space with channel-recurrent architecture, in order to provide not only improved generation qualities but also interpretable high-level features. In particular, to better achieve the latter, we further propose an attention mechanism over each attribute to indicate the specific latent subset responsible for its modulation. Thanks to the latent semantics formed via the channel-recurreny, we envision a tool that takes the desired attributes as inputs and then performs a 2-stage general-to-specific generation of diverse and realistic faces. Lastly, we incorporate the progressive-growth training scheme to the inference, generation and discriminator networks of our models to facilitate higher resolution outputs. Evaluations are performed through both qualitative visual examination and quantitative metrics, namely inception scores, human preferences, and attribute classification accuracy.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

属性条件人脸合成有许多潜在的用例,例如帮助识别嫌疑人或失踪人员。在VAE-GAN的条件版本的基础上,我们用通道循环架构增强了连接潜在空间的路径,不仅提供了改进的生成质量,还提供了可解释的高级特征。特别是,为了更好地实现后者,我们进一步提出了每个属性的注意机制,以指示负责其调制的特定潜在子集。由于通过通道递归形成的潜在语义,我们设想了一种工具,它将所需的属性作为输入,然后执行从一般到特定的两阶段生成多样化和逼真的面孔。最后,我们将渐进式增长训练方案结合到模型的推理、生成和判别器网络中,以促进更高分辨率的输出。评估是通过定性视觉检查和定量度量来执行的,即初始分数、人类偏好和属性分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attentive Conditional Channel-Recurrent Autoencoding for Attribute-Conditioned Face Synthesis
Attribute-conditioned face synthesis has many potential use cases, such as to aid the identification of a suspect or a missing person. Building on top of a conditional version of VAE-GAN, we augment the pathways connecting the latent space with channel-recurrent architecture, in order to provide not only improved generation qualities but also interpretable high-level features. In particular, to better achieve the latter, we further propose an attention mechanism over each attribute to indicate the specific latent subset responsible for its modulation. Thanks to the latent semantics formed via the channel-recurreny, we envision a tool that takes the desired attributes as inputs and then performs a 2-stage general-to-specific generation of diverse and realistic faces. Lastly, we incorporate the progressive-growth training scheme to the inference, generation and discriminator networks of our models to facilitate higher resolution outputs. Evaluations are performed through both qualitative visual examination and quantitative metrics, namely inception scores, human preferences, and attribute classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信