萤火虫启发的人脸识别特征选择

Vandana Agarwal, S. Bhanot
{"title":"萤火虫启发的人脸识别特征选择","authors":"Vandana Agarwal, S. Bhanot","doi":"10.1109/IC3.2015.7346689","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive technique using Firefly Algorithm for feature selection in face recognition is proposed. The artificial fireflies are designed to represent the feature subset and they move in a hyper dimensional space to obtain the best features. The features are extracted using Discrete Cosine Transform (DCT) and Haar wavelets based Discrete Wavelet Transform (DWT). The algorithm is validated using benchmark face databases namely ORL and Yale. The proposed algorithm outperforms various existing techniques. The average recognition accuracy using five randomly selected training samples over four independent runs for the ORL is 94.375%. The accuracy using six training images for Yale face database is 99.16%. The effect of parameter `gamma', specific to Firefly Algorithm on recognition accuracy is also investigated.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Firefly inspired feature selection for face recognition\",\"authors\":\"Vandana Agarwal, S. Bhanot\",\"doi\":\"10.1109/IC3.2015.7346689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an adaptive technique using Firefly Algorithm for feature selection in face recognition is proposed. The artificial fireflies are designed to represent the feature subset and they move in a hyper dimensional space to obtain the best features. The features are extracted using Discrete Cosine Transform (DCT) and Haar wavelets based Discrete Wavelet Transform (DWT). The algorithm is validated using benchmark face databases namely ORL and Yale. The proposed algorithm outperforms various existing techniques. The average recognition accuracy using five randomly selected training samples over four independent runs for the ORL is 94.375%. The accuracy using six training images for Yale face database is 99.16%. The effect of parameter `gamma', specific to Firefly Algorithm on recognition accuracy is also investigated.\",\"PeriodicalId\":217950,\"journal\":{\"name\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2015.7346689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于萤火虫算法的人脸识别特征选择自适应技术。人工萤火虫被设计为特征子集,它们在超维空间中移动以获得最佳特征。使用离散余弦变换(DCT)和基于Haar小波的离散小波变换(DWT)提取特征。采用ORL和Yale两种基准人脸数据库对算法进行了验证。该算法优于现有的各种技术。使用随机选择的5个训练样本进行4次独立运行,ORL的平均识别准确率为94.375%。使用耶鲁大学人脸数据库的6张训练图像,准确率为99.16%。研究了萤火虫算法中参数γ对识别精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Firefly inspired feature selection for face recognition
In this paper, an adaptive technique using Firefly Algorithm for feature selection in face recognition is proposed. The artificial fireflies are designed to represent the feature subset and they move in a hyper dimensional space to obtain the best features. The features are extracted using Discrete Cosine Transform (DCT) and Haar wavelets based Discrete Wavelet Transform (DWT). The algorithm is validated using benchmark face databases namely ORL and Yale. The proposed algorithm outperforms various existing techniques. The average recognition accuracy using five randomly selected training samples over four independent runs for the ORL is 94.375%. The accuracy using six training images for Yale face database is 99.16%. The effect of parameter `gamma', specific to Firefly Algorithm on recognition accuracy is also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信