利用k均值聚类技术加速FV轨迹的调试

Eman El Mandouh, A. Wassal
{"title":"利用k均值聚类技术加速FV轨迹的调试","authors":"Eman El Mandouh, A. Wassal","doi":"10.1109/IDT.2016.7843055","DOIUrl":null,"url":null,"abstract":"As the size and the complexity of today's HW designs increase significantly, the debugging process becomes a real bottleneck in the function verification life cycle. A huge amount of debugging data is generated during HW design simulation, emulation and prototyping sessions. So any attempt to automate the diagnosis of the resulted data can be of great help to reduce the debugging time and increase the diagnosis accuracy. This paper proposes the utilization of machine learning techniques to automate the diagnosis of design trace history. k-means clustering technique is used to group the trace segments that own huge similarity and identify the ones that occur rarely during the design execution time. We demonstrate the application of the proposed framework in guiding the functional verification debugging effort using a group of industrial HW designs.","PeriodicalId":131600,"journal":{"name":"2016 11th International Design & Test Symposium (IDT)","volume":"8 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accelerating the debugging of FV traces using K-means clustering techniques\",\"authors\":\"Eman El Mandouh, A. Wassal\",\"doi\":\"10.1109/IDT.2016.7843055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the size and the complexity of today's HW designs increase significantly, the debugging process becomes a real bottleneck in the function verification life cycle. A huge amount of debugging data is generated during HW design simulation, emulation and prototyping sessions. So any attempt to automate the diagnosis of the resulted data can be of great help to reduce the debugging time and increase the diagnosis accuracy. This paper proposes the utilization of machine learning techniques to automate the diagnosis of design trace history. k-means clustering technique is used to group the trace segments that own huge similarity and identify the ones that occur rarely during the design execution time. We demonstrate the application of the proposed framework in guiding the functional verification debugging effort using a group of industrial HW designs.\",\"PeriodicalId\":131600,\"journal\":{\"name\":\"2016 11th International Design & Test Symposium (IDT)\",\"volume\":\"8 Pt 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Design & Test Symposium (IDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2016.7843055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Design & Test Symposium (IDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2016.7843055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着当今硬件设计的规模和复杂性的显著增加,调试过程成为功能验证生命周期中真正的瓶颈。在硬件设计仿真、仿真和原型设计阶段会产生大量的调试数据。因此,任何对结果数据进行自动化诊断的尝试都有助于减少调试时间和提高诊断准确性。本文提出利用机器学习技术实现设计轨迹历史的自动诊断。采用K-means聚类技术对相似性较大的跟踪段进行分组,识别出在设计执行期间很少出现的跟踪段。我们用一组工业硬件设计演示了所提出的框架在指导功能验证调试工作中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating the debugging of FV traces using K-means clustering techniques
As the size and the complexity of today's HW designs increase significantly, the debugging process becomes a real bottleneck in the function verification life cycle. A huge amount of debugging data is generated during HW design simulation, emulation and prototyping sessions. So any attempt to automate the diagnosis of the resulted data can be of great help to reduce the debugging time and increase the diagnosis accuracy. This paper proposes the utilization of machine learning techniques to automate the diagnosis of design trace history. k-means clustering technique is used to group the trace segments that own huge similarity and identify the ones that occur rarely during the design execution time. We demonstrate the application of the proposed framework in guiding the functional verification debugging effort using a group of industrial HW designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信