{"title":"升主动脉瘤牛顿与非牛顿血流的比较","authors":"A. Petuchova, A. Maknickas","doi":"10.22489/CinC.2022.085","DOIUrl":null,"url":null,"abstract":"This work aimed to perform a numerical study of aortic hemodynamics and evaluate both Newtonian and non-Newtonian blood flow parameters in an ascending aortic aneurysm model. An aortic model was reconstructed from a medical computed tomography (CT) image, and finite element method laminar blood flow modelling was performed using different blood parameters. The inflow boundary conditions were defined as a flow profile, and the outlet boundary conditions were defined as the pressure at each outlet. The first simulation was calculated by considering blood as a Newtonian fluid, while in the second simulation, using the Carreau model, blood was assumed to be a non-Newtonian fluid. The results showed that average systolic and diastolic velocities were 2% and 9% higher, respectively, for the non-Newtonian fluid. In addition, the wall shear stress (WSS) values on the surface of the aneurysm were 30% higher during systole in the non-Newtonian simulation, while the average WSS on the artery surface in diastole was 20% higher for the Newtonian fluid.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Newtonian and Non-Newtonian Blood Flow in an Ascending Aortic Aneurysm\",\"authors\":\"A. Petuchova, A. Maknickas\",\"doi\":\"10.22489/CinC.2022.085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aimed to perform a numerical study of aortic hemodynamics and evaluate both Newtonian and non-Newtonian blood flow parameters in an ascending aortic aneurysm model. An aortic model was reconstructed from a medical computed tomography (CT) image, and finite element method laminar blood flow modelling was performed using different blood parameters. The inflow boundary conditions were defined as a flow profile, and the outlet boundary conditions were defined as the pressure at each outlet. The first simulation was calculated by considering blood as a Newtonian fluid, while in the second simulation, using the Carreau model, blood was assumed to be a non-Newtonian fluid. The results showed that average systolic and diastolic velocities were 2% and 9% higher, respectively, for the non-Newtonian fluid. In addition, the wall shear stress (WSS) values on the surface of the aneurysm were 30% higher during systole in the non-Newtonian simulation, while the average WSS on the artery surface in diastole was 20% higher for the Newtonian fluid.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Newtonian and Non-Newtonian Blood Flow in an Ascending Aortic Aneurysm
This work aimed to perform a numerical study of aortic hemodynamics and evaluate both Newtonian and non-Newtonian blood flow parameters in an ascending aortic aneurysm model. An aortic model was reconstructed from a medical computed tomography (CT) image, and finite element method laminar blood flow modelling was performed using different blood parameters. The inflow boundary conditions were defined as a flow profile, and the outlet boundary conditions were defined as the pressure at each outlet. The first simulation was calculated by considering blood as a Newtonian fluid, while in the second simulation, using the Carreau model, blood was assumed to be a non-Newtonian fluid. The results showed that average systolic and diastolic velocities were 2% and 9% higher, respectively, for the non-Newtonian fluid. In addition, the wall shear stress (WSS) values on the surface of the aneurysm were 30% higher during systole in the non-Newtonian simulation, while the average WSS on the artery surface in diastole was 20% higher for the Newtonian fluid.