图的双连通和最小共同祖先问题的分布式算法

Ian Bogle, George M. Slota
{"title":"图的双连通和最小共同祖先问题的分布式算法","authors":"Ian Bogle, George M. Slota","doi":"10.1109/IPDPSW55747.2022.00187","DOIUrl":null,"url":null,"abstract":"Graph connectivity analysis is one of the primary ways to analyze the topological structure of social networks. Graph biconnectivity decompositions are of particular interest due to how they identify cut vertices and cut edges in a network. We present the first, to our knowledge, implementation of a distributed-memory parallel biconnectivity algorithm. As part of our algorithm, we also require the computation of least common ancestors (LCAs) of non-tree edge endpoints in a BFS tree. As such, we also propose a novel distributed algorithm for the LCA problem. Using our implementations, we observe up to a 14.8× speedup from 1 to 128 MPI ranks for computing a biconnectivity decomposition.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"8 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed Algorithms for the Graph Biconnectivity and Least Common Ancestor Problems\",\"authors\":\"Ian Bogle, George M. Slota\",\"doi\":\"10.1109/IPDPSW55747.2022.00187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph connectivity analysis is one of the primary ways to analyze the topological structure of social networks. Graph biconnectivity decompositions are of particular interest due to how they identify cut vertices and cut edges in a network. We present the first, to our knowledge, implementation of a distributed-memory parallel biconnectivity algorithm. As part of our algorithm, we also require the computation of least common ancestors (LCAs) of non-tree edge endpoints in a BFS tree. As such, we also propose a novel distributed algorithm for the LCA problem. Using our implementations, we observe up to a 14.8× speedup from 1 to 128 MPI ranks for computing a biconnectivity decomposition.\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"8 Pt 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图连通性分析是分析社会网络拓扑结构的主要方法之一。图的双连通分解是特别有趣的,因为它们如何识别网络中的切割顶点和切割边。我们提出了第一个,据我们所知,分布式内存并行双连接算法的实现。作为我们算法的一部分,我们还需要计算BFS树中非树边缘端点的最小共同祖先(lca)。因此,我们还提出了一种新的分布式LCA算法。使用我们的实现,我们观察到在计算双连接分解时,从1到128 MPI的速度提升了14.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Algorithms for the Graph Biconnectivity and Least Common Ancestor Problems
Graph connectivity analysis is one of the primary ways to analyze the topological structure of social networks. Graph biconnectivity decompositions are of particular interest due to how they identify cut vertices and cut edges in a network. We present the first, to our knowledge, implementation of a distributed-memory parallel biconnectivity algorithm. As part of our algorithm, we also require the computation of least common ancestors (LCAs) of non-tree edge endpoints in a BFS tree. As such, we also propose a novel distributed algorithm for the LCA problem. Using our implementations, we observe up to a 14.8× speedup from 1 to 128 MPI ranks for computing a biconnectivity decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信