{"title":"ω栅极纳米线SOI mosfet的固有电压增益和单位增益频率","authors":"W. Perina, J. Martino, P. Agopian","doi":"10.1109/SBMicro.2019.8919278","DOIUrl":null,"url":null,"abstract":"This paper shows the influence of channel width (W<inf>NW</inf>) and channel length (L) on intrinsic voltage gain (A<inf>V</inf>) and on unit-gain frequency (f<inf>t</inf>) of omega-gate nanowire SOI MOSFET. The f<inf>t</inf> is calculated taking into consideration the experimental gate capacitance. The device showed excellent electrostatic control for the W<inf>NW</inf> of 10 nm, which improved transconductance, consequently, improving both A<inf>V</inf> and f<inf>t</inf>. This technology showed values of A<inf>V</inf> around 80 dB and a f<inf>t</inf> of over 200 GHz, proving that this device is an excellent for future analog applications like 5G communications and Internet-of-Things (IoT).","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intrinsic Voltage Gain and Unit-Gain Frequency of Omega-Gate Nanowire SOI MOSFETs\",\"authors\":\"W. Perina, J. Martino, P. Agopian\",\"doi\":\"10.1109/SBMicro.2019.8919278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows the influence of channel width (W<inf>NW</inf>) and channel length (L) on intrinsic voltage gain (A<inf>V</inf>) and on unit-gain frequency (f<inf>t</inf>) of omega-gate nanowire SOI MOSFET. The f<inf>t</inf> is calculated taking into consideration the experimental gate capacitance. The device showed excellent electrostatic control for the W<inf>NW</inf> of 10 nm, which improved transconductance, consequently, improving both A<inf>V</inf> and f<inf>t</inf>. This technology showed values of A<inf>V</inf> around 80 dB and a f<inf>t</inf> of over 200 GHz, proving that this device is an excellent for future analog applications like 5G communications and Internet-of-Things (IoT).\",\"PeriodicalId\":403446,\"journal\":{\"name\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBMicro.2019.8919278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMicro.2019.8919278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intrinsic Voltage Gain and Unit-Gain Frequency of Omega-Gate Nanowire SOI MOSFETs
This paper shows the influence of channel width (WNW) and channel length (L) on intrinsic voltage gain (AV) and on unit-gain frequency (ft) of omega-gate nanowire SOI MOSFET. The ft is calculated taking into consideration the experimental gate capacitance. The device showed excellent electrostatic control for the WNW of 10 nm, which improved transconductance, consequently, improving both AV and ft. This technology showed values of AV around 80 dB and a ft of over 200 GHz, proving that this device is an excellent for future analog applications like 5G communications and Internet-of-Things (IoT).