基于粒子群和法向相似度的质量评价

Tie Wang, Gaonan Wang, Zhiguang Chen, Jianyang Lin
{"title":"基于粒子群和法向相似度的质量评价","authors":"Tie Wang, Gaonan Wang, Zhiguang Chen, Jianyang Lin","doi":"10.1109/FITME.2008.20","DOIUrl":null,"url":null,"abstract":"To assess quality fast and accurate, analyze the K-means clustering, point out that the main advantages of k-means algorithm are its simplicity and speed which allows it to run on large datasets .Introduce the method of particle swarm optimization, through calculation, point out that all the particles are likely to faster convergence on the optimal solution. According to the character of quality assessment that mean and standard deviation are considered, supply a normal similarity method; Result: The method that combines particle swarm optimization with normal similarity to assess quality is feasible.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality Assessment Based on Particle Swarm and Normal Similarity\",\"authors\":\"Tie Wang, Gaonan Wang, Zhiguang Chen, Jianyang Lin\",\"doi\":\"10.1109/FITME.2008.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To assess quality fast and accurate, analyze the K-means clustering, point out that the main advantages of k-means algorithm are its simplicity and speed which allows it to run on large datasets .Introduce the method of particle swarm optimization, through calculation, point out that all the particles are likely to faster convergence on the optimal solution. According to the character of quality assessment that mean and standard deviation are considered, supply a normal similarity method; Result: The method that combines particle swarm optimization with normal similarity to assess quality is feasible.\",\"PeriodicalId\":218182,\"journal\":{\"name\":\"2008 International Seminar on Future Information Technology and Management Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Seminar on Future Information Technology and Management Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FITME.2008.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了快速准确地评估质量,分析了K-means聚类,指出K-means算法的主要优点是简单和速度快,可以在大数据集上运行。介绍了粒子群优化的方法,通过计算,指出所有的粒子都可能更快地收敛到最优解上。根据综合考虑均数和标准差的质量评价特点,提出了一种正态相似法;结果:将粒子群优化与法向相似度相结合的方法进行质量评价是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality Assessment Based on Particle Swarm and Normal Similarity
To assess quality fast and accurate, analyze the K-means clustering, point out that the main advantages of k-means algorithm are its simplicity and speed which allows it to run on large datasets .Introduce the method of particle swarm optimization, through calculation, point out that all the particles are likely to faster convergence on the optimal solution. According to the character of quality assessment that mean and standard deviation are considered, supply a normal similarity method; Result: The method that combines particle swarm optimization with normal similarity to assess quality is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信