介绍线弹性材料的断裂力学

C. Dascalu
{"title":"介绍线弹性材料的断裂力学","authors":"C. Dascalu","doi":"10.1080/17747120.2007.9692968","DOIUrl":null,"url":null,"abstract":"ABSTRACT This contribution introduces the basic concepts of Fracture Mechanics in linear elastic materials. A brief review of the history of Fracture Mechanics is given in the first section of the paper. Then we present the asymptotic behavior of the mechanical fields near the crack fronts. Basic fracture modes and corresponding stress intensity factors are defined. An energy analysis of crack propagation is performed, the energy released rate and the path-independent J integral are introduced. We finally present fracture propagation criteria, for simple or mixed mode loadings.","PeriodicalId":368904,"journal":{"name":"Revue Européenne de Génie Civil","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An introduction to fracture mechanics in linear elastic materials\",\"authors\":\"C. Dascalu\",\"doi\":\"10.1080/17747120.2007.9692968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This contribution introduces the basic concepts of Fracture Mechanics in linear elastic materials. A brief review of the history of Fracture Mechanics is given in the first section of the paper. Then we present the asymptotic behavior of the mechanical fields near the crack fronts. Basic fracture modes and corresponding stress intensity factors are defined. An energy analysis of crack propagation is performed, the energy released rate and the path-independent J integral are introduced. We finally present fracture propagation criteria, for simple or mixed mode loadings.\",\"PeriodicalId\":368904,\"journal\":{\"name\":\"Revue Européenne de Génie Civil\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue Européenne de Génie Civil\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17747120.2007.9692968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Européenne de Génie Civil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17747120.2007.9692968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了线弹性材料断裂力学的基本概念。本文第一部分简要回顾了断裂力学的发展历史。然后给出了裂纹前缘附近的力学场的渐近行为。定义了基本断裂模式和相应的应力强度因子。对裂纹扩展过程进行了能量分析,引入了能量释放率和路径无关的J积分。我们最后提出了简单或混合模式载荷下的断裂扩展准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An introduction to fracture mechanics in linear elastic materials
ABSTRACT This contribution introduces the basic concepts of Fracture Mechanics in linear elastic materials. A brief review of the history of Fracture Mechanics is given in the first section of the paper. Then we present the asymptotic behavior of the mechanical fields near the crack fronts. Basic fracture modes and corresponding stress intensity factors are defined. An energy analysis of crack propagation is performed, the energy released rate and the path-independent J integral are introduced. We finally present fracture propagation criteria, for simple or mixed mode loadings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信