{"title":"通过基于游戏的合成保护程序","authors":"S. Jha, T. Reps, William R. Harris","doi":"10.1109/FMCAD.2013.7035519","DOIUrl":null,"url":null,"abstract":"Summary form only given. Several recent operating systems provide system calls that allow an application to explicitly manage the privileges of modules with which the application interacts. Such privilege-aware operating systems allow a programmer to a write a program that satisfies a strong security policy, even when the program interacts with untrusted modules. However, it is often non-trivial to rewrite a program to correctly use the system calls to satisfy a high-level security policy. This paper concerns the policy-weaving problem, which is to take as input a program, a desired high-level policy for the program, and a description of how system calls affect privilege, and automatically rewrite the program to invoke the system calls so that it satisfies the policy. We describe a reduction from the policy-weaving problem to finding a winning strategy to a two-player safety game. We then describe a policy-weaver generator that implements the reduction and a novel game-solving algorithm, and present an experimental evaluation of the generator applied to a model of the Capsicum capability system. We conclude by outlining ongoing work in applying the generator to a model of the HiStar decentralized-information-flow control (DIFC) system.","PeriodicalId":346097,"journal":{"name":"2013 Formal Methods in Computer-Aided Design","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Secure programs via game-based synthesis\",\"authors\":\"S. Jha, T. Reps, William R. Harris\",\"doi\":\"10.1109/FMCAD.2013.7035519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Several recent operating systems provide system calls that allow an application to explicitly manage the privileges of modules with which the application interacts. Such privilege-aware operating systems allow a programmer to a write a program that satisfies a strong security policy, even when the program interacts with untrusted modules. However, it is often non-trivial to rewrite a program to correctly use the system calls to satisfy a high-level security policy. This paper concerns the policy-weaving problem, which is to take as input a program, a desired high-level policy for the program, and a description of how system calls affect privilege, and automatically rewrite the program to invoke the system calls so that it satisfies the policy. We describe a reduction from the policy-weaving problem to finding a winning strategy to a two-player safety game. We then describe a policy-weaver generator that implements the reduction and a novel game-solving algorithm, and present an experimental evaluation of the generator applied to a model of the Capsicum capability system. We conclude by outlining ongoing work in applying the generator to a model of the HiStar decentralized-information-flow control (DIFC) system.\",\"PeriodicalId\":346097,\"journal\":{\"name\":\"2013 Formal Methods in Computer-Aided Design\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Formal Methods in Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2013.7035519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Formal Methods in Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2013.7035519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Summary form only given. Several recent operating systems provide system calls that allow an application to explicitly manage the privileges of modules with which the application interacts. Such privilege-aware operating systems allow a programmer to a write a program that satisfies a strong security policy, even when the program interacts with untrusted modules. However, it is often non-trivial to rewrite a program to correctly use the system calls to satisfy a high-level security policy. This paper concerns the policy-weaving problem, which is to take as input a program, a desired high-level policy for the program, and a description of how system calls affect privilege, and automatically rewrite the program to invoke the system calls so that it satisfies the policy. We describe a reduction from the policy-weaving problem to finding a winning strategy to a two-player safety game. We then describe a policy-weaver generator that implements the reduction and a novel game-solving algorithm, and present an experimental evaluation of the generator applied to a model of the Capsicum capability system. We conclude by outlining ongoing work in applying the generator to a model of the HiStar decentralized-information-flow control (DIFC) system.