Kaizen:半自动索引顾问

I. Jimenez, H. Sánchez, Quoc Trung Tran, N. Polyzotis
{"title":"Kaizen:半自动索引顾问","authors":"I. Jimenez, H. Sánchez, Quoc Trung Tran, N. Polyzotis","doi":"10.1145/2213836.2213932","DOIUrl":null,"url":null,"abstract":"Index tuning; i.e., selecting indexes that are appropriate for the workload to obtain good system performance, is a crucial task for database administrators. Administrators rely on automated index advisors for this task, but existing advisors work either offline, requiring a-priori knowledge of the workload, or online, taking the administrator out of the picture and assuming total control of the index tuning task. Semi-automatic index tuning is a new paradigm that achieves a middle ground: the advisor analyzes the workload online and provides recommendations tailored to the current workload, and the administrator is able to provide feedback to refine future recommendations. In this demonstration we present Kaizen, an index tuning tool that implements semi-automatic tuning.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Kaizen: a semi-automatic index advisor\",\"authors\":\"I. Jimenez, H. Sánchez, Quoc Trung Tran, N. Polyzotis\",\"doi\":\"10.1145/2213836.2213932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Index tuning; i.e., selecting indexes that are appropriate for the workload to obtain good system performance, is a crucial task for database administrators. Administrators rely on automated index advisors for this task, but existing advisors work either offline, requiring a-priori knowledge of the workload, or online, taking the administrator out of the picture and assuming total control of the index tuning task. Semi-automatic index tuning is a new paradigm that achieves a middle ground: the advisor analyzes the workload online and provides recommendations tailored to the current workload, and the administrator is able to provide feedback to refine future recommendations. In this demonstration we present Kaizen, an index tuning tool that implements semi-automatic tuning.\",\"PeriodicalId\":212616,\"journal\":{\"name\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213836.2213932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

指数调优;也就是说,选择适合工作负载的索引以获得良好的系统性能,是数据库管理员的一项关键任务。管理员依靠自动索引顾问来完成这项任务,但是现有的顾问要么离线工作,需要对工作负载有先验的了解,要么在线工作,将管理员排除在外,并承担对索引调优任务的完全控制。半自动索引调优是一种介于两者之间的新范例:advisor在线分析工作负载并提供适合当前工作负载的建议,管理员能够提供反馈以改进未来的建议。在本演示中,我们将介绍Kaizen,这是一个实现半自动调优的索引调优工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kaizen: a semi-automatic index advisor
Index tuning; i.e., selecting indexes that are appropriate for the workload to obtain good system performance, is a crucial task for database administrators. Administrators rely on automated index advisors for this task, but existing advisors work either offline, requiring a-priori knowledge of the workload, or online, taking the administrator out of the picture and assuming total control of the index tuning task. Semi-automatic index tuning is a new paradigm that achieves a middle ground: the advisor analyzes the workload online and provides recommendations tailored to the current workload, and the administrator is able to provide feedback to refine future recommendations. In this demonstration we present Kaizen, an index tuning tool that implements semi-automatic tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信