最佳非迭代涡轮解码

M. Breiling, L. Hanzo
{"title":"最佳非迭代涡轮解码","authors":"M. Breiling, L. Hanzo","doi":"10.1109/PIMRC.1997.631161","DOIUrl":null,"url":null,"abstract":"By observing the structure of the decoder's trellis a new, non-iterative turbo-decoder based on a super-trellis structure is proposed, which exhibits the same decoding complexity as a conventional convolutional decoder possessing an identical number of trellis states. For the investigated half-rate, memory-length two code the proposed algorithm requires about 0.5 dB lower Gaussian channel signal-to-noise ratio (SNR) than the maximum a posteriori (MAP) algorithm using 16 iterations.","PeriodicalId":362340,"journal":{"name":"Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimum non-iterative turbo-decoding\",\"authors\":\"M. Breiling, L. Hanzo\",\"doi\":\"10.1109/PIMRC.1997.631161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By observing the structure of the decoder's trellis a new, non-iterative turbo-decoder based on a super-trellis structure is proposed, which exhibits the same decoding complexity as a conventional convolutional decoder possessing an identical number of trellis states. For the investigated half-rate, memory-length two code the proposed algorithm requires about 0.5 dB lower Gaussian channel signal-to-noise ratio (SNR) than the maximum a posteriori (MAP) algorithm using 16 iterations.\",\"PeriodicalId\":362340,\"journal\":{\"name\":\"Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.1997.631161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.1997.631161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

通过观察解码器的网格结构,提出了一种基于超网格结构的非迭代涡轮解码器,该解码器具有与传统卷积解码器相同的解码复杂度,且具有相同的网格状态数。对于所研究的半速率、存储长度两码,所提出的算法需要的高斯信道信噪比(SNR)比最大后验(MAP)算法低0.5 dB左右,需要16次迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum non-iterative turbo-decoding
By observing the structure of the decoder's trellis a new, non-iterative turbo-decoder based on a super-trellis structure is proposed, which exhibits the same decoding complexity as a conventional convolutional decoder possessing an identical number of trellis states. For the investigated half-rate, memory-length two code the proposed algorithm requires about 0.5 dB lower Gaussian channel signal-to-noise ratio (SNR) than the maximum a posteriori (MAP) algorithm using 16 iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信