关于D5原则的复杂性

X. Dahan, É. Schost, M. M. Maza, Wenyuan Wu, Yuzhen Xie
{"title":"关于D5原则的复杂性","authors":"X. Dahan, É. Schost, M. M. Maza, Wenyuan Wu, Yuzhen Xie","doi":"10.1145/1113439.1113457","DOIUrl":null,"url":null,"abstract":"The standard approach for computing with an algebraic number isthrough the data of its irreducible minimal polynomial over somebase field k. However, in typical tasks such as polynomialsystem solving, involving many algebraic numbers of high degree,following this approach will require using probably costlyfactorization algorithms. Della Dora, Dicrescenzo and Duvalintroduced \"dynamic evaluation\" techniques (also termed \"D5principle\") [3] as a means to compute with algebraic numbers, whileavoiding factorization. Roughly speaking, this approach leads oneto compute over direct products of field extensions of k,instead of only field extensions.\nIn this work, we address complexity issues for basic operationsin such structures. Precisely, let\n[EQUATION]\nbe a family of polynomials, called a <i>triangularset</i>, such that <i>k</i> &larr;<i>K</i> =<i>k</i>[<i>X</i><inf>1</inf>,...,<i>X<inf>n</inf></i>]/<b>T</b>is a direct product of field extensions. We write &delta; forthe dimension of <i>K</i> over <i>k</i>,which we call the <i>degree</i> of<b>T.</b> Using fast polynomial multiplication andNewton iteration for power series inverse, it is a folklore resultthat for any &epsilon; &gt; 0, the operations (+, X) in<i>K</i> can be performed in<i>c</i><sup><i>n</i></sup><inf>&epsilon;</inf>&delta;<sup>1+&epsilon;</sup>operations in <i>k</i>, for some constant<i>c</i><inf>&epsilon;</inf>. Using afast Euclidean algorithm, a similar result easily carries over toinversion, <i>in the special case when K is afield.</i>\nOur main results are similar estimates for the general case,where <i>K</i> is merely a product of fields. Followingthe D5 philosophy, meeting zero-divisors in the computation willlead to <i>splitting</i> the triangular set<b>T</b> into a family thereof, defining the sameextension. Inversion is then replaced by<i>quasi-inversion:</i> a quasi-inverse [6] of&alpha; &isin; <i>K</i> is a splitting of<b>T</b>, such that &alpha; is either zero orinvertible in each component, together with the data of thecorresponding inverses.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"On the complexity of the D5 principle\",\"authors\":\"X. Dahan, É. Schost, M. M. Maza, Wenyuan Wu, Yuzhen Xie\",\"doi\":\"10.1145/1113439.1113457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard approach for computing with an algebraic number isthrough the data of its irreducible minimal polynomial over somebase field k. However, in typical tasks such as polynomialsystem solving, involving many algebraic numbers of high degree,following this approach will require using probably costlyfactorization algorithms. Della Dora, Dicrescenzo and Duvalintroduced \\\"dynamic evaluation\\\" techniques (also termed \\\"D5principle\\\") [3] as a means to compute with algebraic numbers, whileavoiding factorization. Roughly speaking, this approach leads oneto compute over direct products of field extensions of k,instead of only field extensions.\\nIn this work, we address complexity issues for basic operationsin such structures. Precisely, let\\n[EQUATION]\\nbe a family of polynomials, called a <i>triangularset</i>, such that <i>k</i> &larr;<i>K</i> =<i>k</i>[<i>X</i><inf>1</inf>,...,<i>X<inf>n</inf></i>]/<b>T</b>is a direct product of field extensions. We write &delta; forthe dimension of <i>K</i> over <i>k</i>,which we call the <i>degree</i> of<b>T.</b> Using fast polynomial multiplication andNewton iteration for power series inverse, it is a folklore resultthat for any &epsilon; &gt; 0, the operations (+, X) in<i>K</i> can be performed in<i>c</i><sup><i>n</i></sup><inf>&epsilon;</inf>&delta;<sup>1+&epsilon;</sup>operations in <i>k</i>, for some constant<i>c</i><inf>&epsilon;</inf>. Using afast Euclidean algorithm, a similar result easily carries over toinversion, <i>in the special case when K is afield.</i>\\nOur main results are similar estimates for the general case,where <i>K</i> is merely a product of fields. Followingthe D5 philosophy, meeting zero-divisors in the computation willlead to <i>splitting</i> the triangular set<b>T</b> into a family thereof, defining the sameextension. Inversion is then replaced by<i>quasi-inversion:</i> a quasi-inverse [6] of&alpha; &isin; <i>K</i> is a splitting of<b>T</b>, such that &alpha; is either zero orinvertible in each component, together with the data of thecorresponding inverses.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1113439.1113457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1113439.1113457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

计算代数数的标准方法是通过其在某个基域k上的不可约最小多项式的数据。然而,在典型的任务中,例如多项式系统求解,涉及许多高阶代数数,遵循这种方法将需要使用可能昂贵的因数分解算法。Della Dora, Dicrescenzo和duval引入了“动态求值”技术(也称为“d5原理”)[3],作为使用代数数进行计算的一种手段,同时避免了因式分解。粗略地说,这种方法导致计算k的域扩展的直接乘积,而不仅仅是域扩展。在这项工作中,我们解决了这种结构中基本操作的复杂性问题。准确地说,设[EQUATION]是一个多项式族,称为三角集,使得k ← k =k[X1,…]这是领域扩展的直接产物。写成&;对于K / K的维数,我们称之为ofT度。利用快速多项式乘法和牛顿迭代法求幂级数逆,得到了对任意& ε;比;0,运算(+,X) inK可以在k中执行incnεδ1+ε运算,对于某些常数tcε。使用快速欧几里得算法,在K为域的特殊情况下,类似的结果很容易延续到反演中。对于一般情况,我们的主要结果是类似的估计,其中K仅仅是字段的乘积。遵循D5哲学,在计算中遇到零因子将导致三角集合t分裂为其族,定义相同的扩展。然后用拟反演代替反演:& α的拟逆[6];型号;K是ofT的分裂,使得&;在每个分量中为零或不可逆,连同相应的逆数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of the D5 principle
The standard approach for computing with an algebraic number isthrough the data of its irreducible minimal polynomial over somebase field k. However, in typical tasks such as polynomialsystem solving, involving many algebraic numbers of high degree,following this approach will require using probably costlyfactorization algorithms. Della Dora, Dicrescenzo and Duvalintroduced "dynamic evaluation" techniques (also termed "D5principle") [3] as a means to compute with algebraic numbers, whileavoiding factorization. Roughly speaking, this approach leads oneto compute over direct products of field extensions of k,instead of only field extensions. In this work, we address complexity issues for basic operationsin such structures. Precisely, let [EQUATION] be a family of polynomials, called a triangularset, such that kK =k[X1,...,Xn]/Tis a direct product of field extensions. We write δ forthe dimension of K over k,which we call the degree ofT. Using fast polynomial multiplication andNewton iteration for power series inverse, it is a folklore resultthat for any ε > 0, the operations (+, X) inK can be performed incnεδ1+εoperations in k, for some constantcε. Using afast Euclidean algorithm, a similar result easily carries over toinversion, in the special case when K is afield. Our main results are similar estimates for the general case,where K is merely a product of fields. Followingthe D5 philosophy, meeting zero-divisors in the computation willlead to splitting the triangular setT into a family thereof, defining the sameextension. Inversion is then replaced byquasi-inversion: a quasi-inverse [6] ofα ∈ K is a splitting ofT, such that α is either zero orinvertible in each component, together with the data of thecorresponding inverses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信