基于神经网络的历史传感器数据集成新方法

V. Turchenko, V. Kochan, A. Sachenko, T. Laopoulos
{"title":"基于神经网络的历史传感器数据集成新方法","authors":"V. Turchenko, V. Kochan, A. Sachenko, T. Laopoulos","doi":"10.1109/IDAACS.2001.941971","DOIUrl":null,"url":null,"abstract":"The main feature of a neural network used for accuracy improvement of physical quantities (for example, temperature, humidity, pressure etc.) measurement by data acquisition systems is the insufficient volume of input data for predicting neural network training at an initial exploitation period of sensors. The authors propose the technique of data volume increasing for predicting neural network training using: (i) an additional approximating neural network; (ii) method of \"historical\" data integration (fusion). The authors propose the advanced method of \"historical\" data integration and present simulation results on mathematical models of sensor drift using a single-layer perceptron.","PeriodicalId":419022,"journal":{"name":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The new method of historical sensor data integration using neural networks\",\"authors\":\"V. Turchenko, V. Kochan, A. Sachenko, T. Laopoulos\",\"doi\":\"10.1109/IDAACS.2001.941971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main feature of a neural network used for accuracy improvement of physical quantities (for example, temperature, humidity, pressure etc.) measurement by data acquisition systems is the insufficient volume of input data for predicting neural network training at an initial exploitation period of sensors. The authors propose the technique of data volume increasing for predicting neural network training using: (i) an additional approximating neural network; (ii) method of \\\"historical\\\" data integration (fusion). The authors propose the advanced method of \\\"historical\\\" data integration and present simulation results on mathematical models of sensor drift using a single-layer perceptron.\",\"PeriodicalId\":419022,\"journal\":{\"name\":\"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2001.941971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001 (Cat. No.01EX510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2001.941971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

用于数据采集系统测量物理量(例如温度、湿度、压力等)精度提高的神经网络的主要特征是,在传感器的初始开发阶段,用于预测神经网络训练的输入数据量不足。作者提出了一种预测神经网络训练的数据量增加技术:(i)一个附加的近似神经网络;(ii)“历史”数据整合(融合)方法。作者提出了一种先进的“历史”数据集成方法,并给出了利用单层感知器对传感器漂移数学模型的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The new method of historical sensor data integration using neural networks
The main feature of a neural network used for accuracy improvement of physical quantities (for example, temperature, humidity, pressure etc.) measurement by data acquisition systems is the insufficient volume of input data for predicting neural network training at an initial exploitation period of sensors. The authors propose the technique of data volume increasing for predicting neural network training using: (i) an additional approximating neural network; (ii) method of "historical" data integration (fusion). The authors propose the advanced method of "historical" data integration and present simulation results on mathematical models of sensor drift using a single-layer perceptron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信