基于遗传算法的线性分组码软判决译码

H. Maini, K. Mehrotra, C. Mohan, S. Ranka
{"title":"基于遗传算法的线性分组码软判决译码","authors":"H. Maini, K. Mehrotra, C. Mohan, S. Ranka","doi":"10.1109/ISIT.1994.394622","DOIUrl":null,"url":null,"abstract":"Soft decision decoding is a difficult search problem, for which optimal algorithms are computationally intractable. Genetic algorithms (GA) are stochastic optimisation techniques that have successfully solved many difficult search problems. We have developed a high performance GA for suboptimal soft decision decoding of binary linear block codes, which gives bit error probabilities as low as 0.00183 for a [104, 52] extended quadratic residue code with a signal-to-noise ratio of 2.5 dB, exploring only 30,000 codewords, whereas the search space contains 10/sup 1/5 codewords. Success ensues from the use of a new crossover operator that exploits problem-specific knowledge.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Soft decision decoding of linear block codes using genetic algorithms\",\"authors\":\"H. Maini, K. Mehrotra, C. Mohan, S. Ranka\",\"doi\":\"10.1109/ISIT.1994.394622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft decision decoding is a difficult search problem, for which optimal algorithms are computationally intractable. Genetic algorithms (GA) are stochastic optimisation techniques that have successfully solved many difficult search problems. We have developed a high performance GA for suboptimal soft decision decoding of binary linear block codes, which gives bit error probabilities as low as 0.00183 for a [104, 52] extended quadratic residue code with a signal-to-noise ratio of 2.5 dB, exploring only 30,000 codewords, whereas the search space contains 10/sup 1/5 codewords. Success ensues from the use of a new crossover operator that exploits problem-specific knowledge.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

软判决译码是一个复杂的搜索问题,其最优算法在计算上难以解决。遗传算法是一种随机优化技术,已经成功地解决了许多复杂的搜索问题。我们开发了一种用于二进制线性分组码的次优软判决解码的高性能遗传算法,对于信噪比为2.5 dB的扩展二次剩余码[104,52],其误码率低至0.00183,仅探索30,000个码字,而搜索空间包含10/sup 1/5码字。成功来自于使用一种新的交叉算子,这种算子利用了特定问题的知识
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft decision decoding of linear block codes using genetic algorithms
Soft decision decoding is a difficult search problem, for which optimal algorithms are computationally intractable. Genetic algorithms (GA) are stochastic optimisation techniques that have successfully solved many difficult search problems. We have developed a high performance GA for suboptimal soft decision decoding of binary linear block codes, which gives bit error probabilities as low as 0.00183 for a [104, 52] extended quadratic residue code with a signal-to-noise ratio of 2.5 dB, exploring only 30,000 codewords, whereas the search space contains 10/sup 1/5 codewords. Success ensues from the use of a new crossover operator that exploits problem-specific knowledge.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信