迈向自动生成查询分类:一种分层查询聚类方法

Shui-Lung Chuang, Lee-Feng Chien
{"title":"迈向自动生成查询分类:一种分层查询聚类方法","authors":"Shui-Lung Chuang, Lee-Feng Chien","doi":"10.1109/ICDM.2002.1183888","DOIUrl":null,"url":null,"abstract":"Most previous work on automatic query clustering generated a flat, un-nested partition of query terms. In this work, we discuss the organization of query terms into a hierarchical structure and construct a query taxonomy in an automatic way. The proposed approach is designed based on a hierarchical agglomerative clustering algorithm to hierarchically group similar queries and generate cluster hierarchies using a novel cluster partition technique. The search processes of real-world search engines are combined to obtain highly ranked Web documents as the feature source for each query term. Preliminary experiments show that the proposed approach is effective for obtaining thesaurus information for query terms, and is also feasible for constructing a query taxonomy which provides a basis for in-depth analysis of users' search interests and domain-specific vocabulary on a larger scale.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Towards automatic generation of query taxonomy: a hierarchical query clustering approach\",\"authors\":\"Shui-Lung Chuang, Lee-Feng Chien\",\"doi\":\"10.1109/ICDM.2002.1183888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most previous work on automatic query clustering generated a flat, un-nested partition of query terms. In this work, we discuss the organization of query terms into a hierarchical structure and construct a query taxonomy in an automatic way. The proposed approach is designed based on a hierarchical agglomerative clustering algorithm to hierarchically group similar queries and generate cluster hierarchies using a novel cluster partition technique. The search processes of real-world search engines are combined to obtain highly ranked Web documents as the feature source for each query term. Preliminary experiments show that the proposed approach is effective for obtaining thesaurus information for query terms, and is also feasible for constructing a query taxonomy which provides a basis for in-depth analysis of users' search interests and domain-specific vocabulary on a larger scale.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1183888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

以前大多数关于自动查询聚类的工作生成了一个扁平的、非嵌套的查询词分区。在这项工作中,我们讨论了将查询词组织成一个层次结构,并以一种自动的方式构建查询分类。该方法基于分层聚类算法对相似查询进行分层分组,并使用一种新的聚类划分技术生成聚类层次结构。将现实世界搜索引擎的搜索过程结合起来,获得排名靠前的Web文档,作为每个查询词的特征源。初步实验表明,该方法可以有效地获取查询词库信息,也可用于构建查询分类法,为更大规模地深入分析用户的搜索兴趣和特定领域词汇提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards automatic generation of query taxonomy: a hierarchical query clustering approach
Most previous work on automatic query clustering generated a flat, un-nested partition of query terms. In this work, we discuss the organization of query terms into a hierarchical structure and construct a query taxonomy in an automatic way. The proposed approach is designed based on a hierarchical agglomerative clustering algorithm to hierarchically group similar queries and generate cluster hierarchies using a novel cluster partition technique. The search processes of real-world search engines are combined to obtain highly ranked Web documents as the feature source for each query term. Preliminary experiments show that the proposed approach is effective for obtaining thesaurus information for query terms, and is also feasible for constructing a query taxonomy which provides a basis for in-depth analysis of users' search interests and domain-specific vocabulary on a larger scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信