基于动作捕捉数据分析的人体动作分类与管理

J-HGBU '11 Pub Date : 2011-12-01 DOI:10.1145/2072572.2072594
H. Kadu, May-Chen Kuo, C.-C. Jay Kuo
{"title":"基于动作捕捉数据分析的人体动作分类与管理","authors":"H. Kadu, May-Chen Kuo, C.-C. Jay Kuo","doi":"10.1145/2072572.2072594","DOIUrl":null,"url":null,"abstract":"Human motion understanding based on motion capture (mocap) data is investigated. Recent rapid developments and applications of mocap systems have resulted in a large corpus of mocap sequences, and an automated annotation technique that can classify basic motion types into multiple categories is needed. A novel technique for automated mocap data classification is developed in this work. Specifically, we adopt the tree-structured vector quantization (TSVQ) method to approximate human poses by codewords and approximate the dynamics of mocap sequences by a codeword sequence. To classify mocap data into different categories, we consider three approaches: 1) the spatial domain approach based on the histogram of codewords, 2) the spatial-time domain approach via codeword sequence matching, and 3) a decision fusion approach. We test the proposed algorithm on the CMU mocap database using the n-fold cross validation procedure and obtain a correct classification rate of 97%.","PeriodicalId":404943,"journal":{"name":"J-HGBU '11","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Human motion classification and management based on mocap data analysis\",\"authors\":\"H. Kadu, May-Chen Kuo, C.-C. Jay Kuo\",\"doi\":\"10.1145/2072572.2072594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human motion understanding based on motion capture (mocap) data is investigated. Recent rapid developments and applications of mocap systems have resulted in a large corpus of mocap sequences, and an automated annotation technique that can classify basic motion types into multiple categories is needed. A novel technique for automated mocap data classification is developed in this work. Specifically, we adopt the tree-structured vector quantization (TSVQ) method to approximate human poses by codewords and approximate the dynamics of mocap sequences by a codeword sequence. To classify mocap data into different categories, we consider three approaches: 1) the spatial domain approach based on the histogram of codewords, 2) the spatial-time domain approach via codeword sequence matching, and 3) a decision fusion approach. We test the proposed algorithm on the CMU mocap database using the n-fold cross validation procedure and obtain a correct classification rate of 97%.\",\"PeriodicalId\":404943,\"journal\":{\"name\":\"J-HGBU '11\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J-HGBU '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2072572.2072594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-HGBU '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2072572.2072594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了基于动作捕捉(mocap)数据的人体动作理解。近年来动作捕捉系统的快速发展和应用导致了大量的动作捕捉序列语料库,需要一种能够将基本动作类型划分为多个类别的自动注释技术。本文提出了一种新的动态捕捉数据自动分类技术。具体来说,我们采用树结构矢量量化(TSVQ)方法,通过码字来近似人体姿态,并通过码字序列来近似动作捕捉序列的动态。为了对动作捕捉数据进行分类,我们考虑了三种方法:1)基于码字直方图的空间域方法,2)基于码字序列匹配的时空域方法,以及3)决策融合方法。我们使用n-fold交叉验证程序在CMU动作捕捉数据库上测试了所提出的算法,并获得了97%的正确分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human motion classification and management based on mocap data analysis
Human motion understanding based on motion capture (mocap) data is investigated. Recent rapid developments and applications of mocap systems have resulted in a large corpus of mocap sequences, and an automated annotation technique that can classify basic motion types into multiple categories is needed. A novel technique for automated mocap data classification is developed in this work. Specifically, we adopt the tree-structured vector quantization (TSVQ) method to approximate human poses by codewords and approximate the dynamics of mocap sequences by a codeword sequence. To classify mocap data into different categories, we consider three approaches: 1) the spatial domain approach based on the histogram of codewords, 2) the spatial-time domain approach via codeword sequence matching, and 3) a decision fusion approach. We test the proposed algorithm on the CMU mocap database using the n-fold cross validation procedure and obtain a correct classification rate of 97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信