动态特征空间中的时态数据挖掘

B. Wenerstrom, C. Giraud-Carrier
{"title":"动态特征空间中的时态数据挖掘","authors":"B. Wenerstrom, C. Giraud-Carrier","doi":"10.1109/ICDM.2006.157","DOIUrl":null,"url":null,"abstract":"Many interesting real-world applications for temporal data mining are hindered by concept drift. One particular form of concept drift is characterized by changes to the underlying feature space. Seemingly little has been done in this area. This paper presents FAE, an incremental ensemble approach to mining data subject to such concept drift. Empirical results on large data streams demonstrate promise.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Temporal Data Mining in Dynamic Feature Spaces\",\"authors\":\"B. Wenerstrom, C. Giraud-Carrier\",\"doi\":\"10.1109/ICDM.2006.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many interesting real-world applications for temporal data mining are hindered by concept drift. One particular form of concept drift is characterized by changes to the underlying feature space. Seemingly little has been done in this area. This paper presents FAE, an incremental ensemble approach to mining data subject to such concept drift. Empirical results on large data streams demonstrate promise.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

时间数据挖掘的许多有趣的实际应用程序都受到概念漂移的阻碍。概念漂移的一种特殊形式是以底层特征空间的变化为特征的。在这方面似乎做得很少。本文提出了FAE,一种增量集成方法来挖掘受这种概念漂移影响的数据。大数据流的实证结果显示了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal Data Mining in Dynamic Feature Spaces
Many interesting real-world applications for temporal data mining are hindered by concept drift. One particular form of concept drift is characterized by changes to the underlying feature space. Seemingly little has been done in this area. This paper presents FAE, an incremental ensemble approach to mining data subject to such concept drift. Empirical results on large data streams demonstrate promise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信