基于节能学习自动机的qrach (EELA-RACH)蜂窝M2M通信接入方案

Nasir A. Shinkafi, L. M. Bello, D. S. Shu'aibu, I. Saidu
{"title":"基于节能学习自动机的qrach (EELA-RACH)蜂窝M2M通信接入方案","authors":"Nasir A. Shinkafi, L. M. Bello, D. S. Shu'aibu, I. Saidu","doi":"10.1109/NigeriaComputConf45974.2019.8949654","DOIUrl":null,"url":null,"abstract":"This paper introduces an Energy Efficient Learning Automata Q-Learning Random Access Channel (EELA-RACH) Access Scheme to improve energy efficiency. The proposed EELA-RACH scheme employs a Distributed Learning Automata (DLA) technique based on Learning Automata (LA) feedback to minimise the energy consumed during updating Q-value and storing transmission history. The scheme also utilizes an adaptive duty cycle assignment to control the energy consumption of the Machine-to-Machine (M2M) devices within the cellular M2M communication cycle. The results show that the proposed EELA-RACH scheme achieves better performance compared to the Prioritized Learning Automata Q-Learning RACH (PLA-QL-RACH) and an Enhanced Learning Automata QL-RACH (ELA-QL-RACH) schemes with 9.41% and 65.72% decrease in energy consumption and increase in device lifetime, respectively.","PeriodicalId":228657,"journal":{"name":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy Efficient Learning Automata Based QLRACH (EELA-RACH) Access Scheme for Cellular M2M Communications\",\"authors\":\"Nasir A. Shinkafi, L. M. Bello, D. S. Shu'aibu, I. Saidu\",\"doi\":\"10.1109/NigeriaComputConf45974.2019.8949654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an Energy Efficient Learning Automata Q-Learning Random Access Channel (EELA-RACH) Access Scheme to improve energy efficiency. The proposed EELA-RACH scheme employs a Distributed Learning Automata (DLA) technique based on Learning Automata (LA) feedback to minimise the energy consumed during updating Q-value and storing transmission history. The scheme also utilizes an adaptive duty cycle assignment to control the energy consumption of the Machine-to-Machine (M2M) devices within the cellular M2M communication cycle. The results show that the proposed EELA-RACH scheme achieves better performance compared to the Prioritized Learning Automata Q-Learning RACH (PLA-QL-RACH) and an Enhanced Learning Automata QL-RACH (ELA-QL-RACH) schemes with 9.41% and 65.72% decrease in energy consumption and increase in device lifetime, respectively.\",\"PeriodicalId\":228657,\"journal\":{\"name\":\"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NigeriaComputConf45974.2019.8949654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NigeriaComputConf45974.2019.8949654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种节能学习自动机q -学习随机存取通道(EELA-RACH)存取方案,以提高能源效率。提出的EELA-RACH方案采用基于学习自动机(LA)反馈的分布式学习自动机(DLA)技术,以最小化q值更新和传输历史存储过程中的能量消耗。该方案还利用自适应占空比分配来控制蜂窝M2M通信周期内机器对机器(M2M)设备的能耗。结果表明,与优先学习自动机Q-Learning RACH (PLA-QL-RACH)和增强学习自动机QL-RACH (ELA-QL-RACH)方案相比,EELA-RACH方案的性能更好,能耗降低9.41%,设备寿命延长65.72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Efficient Learning Automata Based QLRACH (EELA-RACH) Access Scheme for Cellular M2M Communications
This paper introduces an Energy Efficient Learning Automata Q-Learning Random Access Channel (EELA-RACH) Access Scheme to improve energy efficiency. The proposed EELA-RACH scheme employs a Distributed Learning Automata (DLA) technique based on Learning Automata (LA) feedback to minimise the energy consumed during updating Q-value and storing transmission history. The scheme also utilizes an adaptive duty cycle assignment to control the energy consumption of the Machine-to-Machine (M2M) devices within the cellular M2M communication cycle. The results show that the proposed EELA-RACH scheme achieves better performance compared to the Prioritized Learning Automata Q-Learning RACH (PLA-QL-RACH) and an Enhanced Learning Automata QL-RACH (ELA-QL-RACH) schemes with 9.41% and 65.72% decrease in energy consumption and increase in device lifetime, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信