Z. Radosavljević, D. Musicki, B. Kovacevic, W. Kim, T. Song
{"title":"集成粒子滤波的目标跟踪","authors":"Z. Radosavljević, D. Musicki, B. Kovacevic, W. Kim, T. Song","doi":"10.1109/ELINFOCOM.2014.6914426","DOIUrl":null,"url":null,"abstract":"Tracking in cluttered environments requires false track discrimination and data association. We extend the particle filter approach to include the data association probabilities and recursively calculate the probability of target existence. The probability of target existence may be used to discriminate false tracks.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Integrated particle filter for target tracking\",\"authors\":\"Z. Radosavljević, D. Musicki, B. Kovacevic, W. Kim, T. Song\",\"doi\":\"10.1109/ELINFOCOM.2014.6914426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking in cluttered environments requires false track discrimination and data association. We extend the particle filter approach to include the data association probabilities and recursively calculate the probability of target existence. The probability of target existence may be used to discriminate false tracks.\",\"PeriodicalId\":360207,\"journal\":{\"name\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINFOCOM.2014.6914426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tracking in cluttered environments requires false track discrimination and data association. We extend the particle filter approach to include the data association probabilities and recursively calculate the probability of target existence. The probability of target existence may be used to discriminate false tracks.