基于深度学习的印尼餐厅评论方面词提取方法

Rachmansyah Adhi Widhianto, A. Romadhony
{"title":"基于深度学习的印尼餐厅评论方面词提取方法","authors":"Rachmansyah Adhi Widhianto, A. Romadhony","doi":"10.1109/ICoICT52021.2021.9527472","DOIUrl":null,"url":null,"abstract":"Aspect term extraction is a fundamental process in aspect-based sentiment analysis. Aspect term extraction aims to identify the review text span that contains the aspect mentions. In this paper, we present our work on aspect term extraction for Indonesian restaurant reviews, using a deep learning-based approach. We collected and annotated an Indonesian restaurant reviews dataset, obtained from a restaurant review website. We performed the annotation at a token-level and used the following aspect labels to annotate the reviews: FOOD, PRICE, AMBIENCE, SERVICE, and MISCELLANEOUS. This paper treats aspect extraction as a token-level classification. We employed a Convolutional Neural Network (CNN) model and Long Short-Term Memory (LSTM) model for the classification. The experimental result showed that the LSTM method gives the best performance, with the micro average F1-score is 55,1%.","PeriodicalId":191671,"journal":{"name":"2021 9th International Conference on Information and Communication Technology (ICoICT)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aspect Term Extraction Using Deep Learning-Based Approach on Indonesian Restaurant Reviews\",\"authors\":\"Rachmansyah Adhi Widhianto, A. Romadhony\",\"doi\":\"10.1109/ICoICT52021.2021.9527472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect term extraction is a fundamental process in aspect-based sentiment analysis. Aspect term extraction aims to identify the review text span that contains the aspect mentions. In this paper, we present our work on aspect term extraction for Indonesian restaurant reviews, using a deep learning-based approach. We collected and annotated an Indonesian restaurant reviews dataset, obtained from a restaurant review website. We performed the annotation at a token-level and used the following aspect labels to annotate the reviews: FOOD, PRICE, AMBIENCE, SERVICE, and MISCELLANEOUS. This paper treats aspect extraction as a token-level classification. We employed a Convolutional Neural Network (CNN) model and Long Short-Term Memory (LSTM) model for the classification. The experimental result showed that the LSTM method gives the best performance, with the micro average F1-score is 55,1%.\",\"PeriodicalId\":191671,\"journal\":{\"name\":\"2021 9th International Conference on Information and Communication Technology (ICoICT)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 9th International Conference on Information and Communication Technology (ICoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoICT52021.2021.9527472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT52021.2021.9527472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

方面词提取是基于方面的情感分析的一个基本过程。方面术语提取的目的是识别包含方面提及的审查文本范围。在本文中,我们使用基于深度学习的方法介绍了我们在印度尼西亚餐厅评论方面术语提取方面的工作。我们收集并注释了从餐馆评论网站获得的印度尼西亚餐馆评论数据集。我们在令牌级别执行注释,并使用以下方面标签来注释评论:FOOD、PRICE、AMBIENCE、SERVICE和MISCELLANEOUS。本文将方面提取作为一种标记级分类。我们使用卷积神经网络(CNN)模型和长短期记忆(LSTM)模型进行分类。实验结果表明,LSTM方法性能最好,微平均f1分数为55.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect Term Extraction Using Deep Learning-Based Approach on Indonesian Restaurant Reviews
Aspect term extraction is a fundamental process in aspect-based sentiment analysis. Aspect term extraction aims to identify the review text span that contains the aspect mentions. In this paper, we present our work on aspect term extraction for Indonesian restaurant reviews, using a deep learning-based approach. We collected and annotated an Indonesian restaurant reviews dataset, obtained from a restaurant review website. We performed the annotation at a token-level and used the following aspect labels to annotate the reviews: FOOD, PRICE, AMBIENCE, SERVICE, and MISCELLANEOUS. This paper treats aspect extraction as a token-level classification. We employed a Convolutional Neural Network (CNN) model and Long Short-Term Memory (LSTM) model for the classification. The experimental result showed that the LSTM method gives the best performance, with the micro average F1-score is 55,1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信