具有生物各向同性模式的圆波导中的本征电磁波

V. Meshcheryakov, A. Mudrov
{"title":"具有生物各向同性模式的圆波导中的本征电磁波","authors":"V. Meshcheryakov, A. Mudrov","doi":"10.1109/MMET.1996.565652","DOIUrl":null,"url":null,"abstract":"The general method for determination of the structure of fields and integrated characteristics consists of construction of Maxwell equations for a boundless biisotropic environment on the basis of which, in view of the boundary conditions, is formed an eigenvalue equation. We describe an alternative approach consisting of the numerical integration of a system of wave equations with given boundary conditions. This permits us to expand the class of soluble problems and to consider waveguides of continually non-uniform structure with biisotropic cross section by filling.","PeriodicalId":270641,"journal":{"name":"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigen electromagnetics wave in round waveguide with biisotropic mode\",\"authors\":\"V. Meshcheryakov, A. Mudrov\",\"doi\":\"10.1109/MMET.1996.565652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The general method for determination of the structure of fields and integrated characteristics consists of construction of Maxwell equations for a boundless biisotropic environment on the basis of which, in view of the boundary conditions, is formed an eigenvalue equation. We describe an alternative approach consisting of the numerical integration of a system of wave equations with given boundary conditions. This permits us to expand the class of soluble problems and to consider waveguides of continually non-uniform structure with biisotropic cross section by filling.\",\"PeriodicalId\":270641,\"journal\":{\"name\":\"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.1996.565652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.1996.565652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定场结构和综合特性的一般方法是建立无界生物各向同性环境的Maxwell方程,在此基础上,结合边界条件,形成特征值方程。我们描述了一种由具有给定边界条件的波动方程系统的数值积分组成的替代方法。这使我们能够扩展可解问题的类别,并通过填充来考虑具有生物各向同性截面的连续非均匀结构的波导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigen electromagnetics wave in round waveguide with biisotropic mode
The general method for determination of the structure of fields and integrated characteristics consists of construction of Maxwell equations for a boundless biisotropic environment on the basis of which, in view of the boundary conditions, is formed an eigenvalue equation. We describe an alternative approach consisting of the numerical integration of a system of wave equations with given boundary conditions. This permits us to expand the class of soluble problems and to consider waveguides of continually non-uniform structure with biisotropic cross section by filling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信