Panagiotis I. Radoglou-Grammatikis, Athanasios Liatifis, Elisavet Grigoriou, Theocharis Saoulidis, Antonios Sarigiannidis, T. Lagkas, P. Sarigiannidis
{"title":"可信:在关键基础设施中使用数据分析进行威胁搜索的解决方案","authors":"Panagiotis I. Radoglou-Grammatikis, Athanasios Liatifis, Elisavet Grigoriou, Theocharis Saoulidis, Antonios Sarigiannidis, T. Lagkas, P. Sarigiannidis","doi":"10.1109/CSR51186.2021.9527936","DOIUrl":null,"url":null,"abstract":"The rise of the Industrial Internet of Things (IIoT) plays a crucial role in the era of hyper-connected digital economies. Despite the valuable benefits, such as increased resiliency, self-monitoring and pervasive control, IIoT raises severe cybersecurity and privacy risks, allowing cyberattackers to exploit a plethora of vulnerabilities and weaknesses that can lead to disastrous consequences. Although the Intrusion Detection and Prevention Systems (IDPS) constitute valuable solutions, they suffer from several gaps, such as zero-day attacks, unknown anomalies and false positives. Therefore, the presence of supporting mechanisms is necessary. To this end, honeypots can protect the real assets and trap the cyberattackers. In this paper, we provide a web-based platform called TRUSTY , which is capable of aggregating, storing and analysing the detection results of multiple industrial honeypots related to Modbus/Transmission Control Protocol (TCP), IEC 60870-5-104, BACnet, Message Queuing Telemetry Transport (MQTT) and EtherNet/IP. Based on this analysis, we provide a dataset related to honeypot security events. Moreover, this paper provides a Reinforcement Learning (RL) method, which decides about the number of honeypots that can be deployed in an industrial environment in a strategic way. In particular, this decision is converted into a Multi-Armed Bandit (MAB), which is solved with the Thompson Sampling (TS) method. The evaluation analysis demonstrates the efficiency of the proposed method.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"TRUSTY: A Solution for Threat Hunting Using Data Analysis in Critical Infrastructures\",\"authors\":\"Panagiotis I. Radoglou-Grammatikis, Athanasios Liatifis, Elisavet Grigoriou, Theocharis Saoulidis, Antonios Sarigiannidis, T. Lagkas, P. Sarigiannidis\",\"doi\":\"10.1109/CSR51186.2021.9527936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise of the Industrial Internet of Things (IIoT) plays a crucial role in the era of hyper-connected digital economies. Despite the valuable benefits, such as increased resiliency, self-monitoring and pervasive control, IIoT raises severe cybersecurity and privacy risks, allowing cyberattackers to exploit a plethora of vulnerabilities and weaknesses that can lead to disastrous consequences. Although the Intrusion Detection and Prevention Systems (IDPS) constitute valuable solutions, they suffer from several gaps, such as zero-day attacks, unknown anomalies and false positives. Therefore, the presence of supporting mechanisms is necessary. To this end, honeypots can protect the real assets and trap the cyberattackers. In this paper, we provide a web-based platform called TRUSTY , which is capable of aggregating, storing and analysing the detection results of multiple industrial honeypots related to Modbus/Transmission Control Protocol (TCP), IEC 60870-5-104, BACnet, Message Queuing Telemetry Transport (MQTT) and EtherNet/IP. Based on this analysis, we provide a dataset related to honeypot security events. Moreover, this paper provides a Reinforcement Learning (RL) method, which decides about the number of honeypots that can be deployed in an industrial environment in a strategic way. In particular, this decision is converted into a Multi-Armed Bandit (MAB), which is solved with the Thompson Sampling (TS) method. The evaluation analysis demonstrates the efficiency of the proposed method.\",\"PeriodicalId\":253300,\"journal\":{\"name\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSR51186.2021.9527936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TRUSTY: A Solution for Threat Hunting Using Data Analysis in Critical Infrastructures
The rise of the Industrial Internet of Things (IIoT) plays a crucial role in the era of hyper-connected digital economies. Despite the valuable benefits, such as increased resiliency, self-monitoring and pervasive control, IIoT raises severe cybersecurity and privacy risks, allowing cyberattackers to exploit a plethora of vulnerabilities and weaknesses that can lead to disastrous consequences. Although the Intrusion Detection and Prevention Systems (IDPS) constitute valuable solutions, they suffer from several gaps, such as zero-day attacks, unknown anomalies and false positives. Therefore, the presence of supporting mechanisms is necessary. To this end, honeypots can protect the real assets and trap the cyberattackers. In this paper, we provide a web-based platform called TRUSTY , which is capable of aggregating, storing and analysing the detection results of multiple industrial honeypots related to Modbus/Transmission Control Protocol (TCP), IEC 60870-5-104, BACnet, Message Queuing Telemetry Transport (MQTT) and EtherNet/IP. Based on this analysis, we provide a dataset related to honeypot security events. Moreover, this paper provides a Reinforcement Learning (RL) method, which decides about the number of honeypots that can be deployed in an industrial environment in a strategic way. In particular, this decision is converted into a Multi-Armed Bandit (MAB), which is solved with the Thompson Sampling (TS) method. The evaluation analysis demonstrates the efficiency of the proposed method.