有吸引力的磁边上的有效算子

S. Fournais, B. Helffer, Ayman Kachmar, N. Raymond
{"title":"有吸引力的磁边上的有效算子","authors":"S. Fournais, B. Helffer, Ayman Kachmar, N. Raymond","doi":"10.5802/jep.236","DOIUrl":null,"url":null,"abstract":"The semiclassical Laplacian with discontinuous magnetic field is considered in two dimensions. The magnetic field is sign changing with exactly two distinct values and is discontinuous along a smooth closed curve, thereby producing an attractive magnetic edge. Various accurate spectral asymptotics are established by means of a dimensional reduction involving a microlocal phase space localization allowing to deal with the discontinuity of the field.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effective operators on an attractive magnetic edge\",\"authors\":\"S. Fournais, B. Helffer, Ayman Kachmar, N. Raymond\",\"doi\":\"10.5802/jep.236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The semiclassical Laplacian with discontinuous magnetic field is considered in two dimensions. The magnetic field is sign changing with exactly two distinct values and is discontinuous along a smooth closed curve, thereby producing an attractive magnetic edge. Various accurate spectral asymptotics are established by means of a dimensional reduction involving a microlocal phase space localization allowing to deal with the discontinuity of the field.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在二维空间中考虑了具有不连续磁场的半经典拉普拉斯算子。磁场以两个完全不同的值随符号变化,并沿着光滑的闭合曲线不连续,从而产生有吸引力的磁边。通过涉及微局部相空间定位的降维方法建立了各种精确的谱渐近性,从而允许处理场的不连续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective operators on an attractive magnetic edge
The semiclassical Laplacian with discontinuous magnetic field is considered in two dimensions. The magnetic field is sign changing with exactly two distinct values and is discontinuous along a smooth closed curve, thereby producing an attractive magnetic edge. Various accurate spectral asymptotics are established by means of a dimensional reduction involving a microlocal phase space localization allowing to deal with the discontinuity of the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信