{"title":"贝叶斯和模糊分类器缺失属性值的填充","authors":"A. Ralescu, S. Visa","doi":"10.1109/NAFIPS.2008.4531263","DOIUrl":null,"url":null,"abstract":"Multidimensional classification problems often must address the issue of missing attribute values. The solution for this problem in the case of two frequency based classifiers is discussed here. The Bayes approach of boosting low frequency values, or filling-in missing values is compared to the interpolation operation used in the fuzzy classifiers.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On filling-in missing attribute values for Bayes and fuzzy classifiers\",\"authors\":\"A. Ralescu, S. Visa\",\"doi\":\"10.1109/NAFIPS.2008.4531263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multidimensional classification problems often must address the issue of missing attribute values. The solution for this problem in the case of two frequency based classifiers is discussed here. The Bayes approach of boosting low frequency values, or filling-in missing values is compared to the interpolation operation used in the fuzzy classifiers.\",\"PeriodicalId\":430770,\"journal\":{\"name\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2008.4531263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On filling-in missing attribute values for Bayes and fuzzy classifiers
Multidimensional classification problems often must address the issue of missing attribute values. The solution for this problem in the case of two frequency based classifiers is discussed here. The Bayes approach of boosting low frequency values, or filling-in missing values is compared to the interpolation operation used in the fuzzy classifiers.