基于变量遗忘因子的局部平均模型金融时间序列预测算法

P. Intachai, P. Yuvapoositanon
{"title":"基于变量遗忘因子的局部平均模型金融时间序列预测算法","authors":"P. Intachai, P. Yuvapoositanon","doi":"10.1109/IEECON.2017.8075876","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a variable forgetting factor-based local average model for estimation of future values of financial time series. The forgetting factor is applied to the existing local average model to govern the weights of past records for the estimation of the future records. By using the trend direction from the turning points of the financial time series, the value of the forgetting factor can be estimated. The results of performance comparison between the proposed variable forgetting factor-based local average model and the original local average model on the actual time series derived from the stocks listed in the Stock Exchange of Thailand are shown. The results suggest that the proposed method offers consistent less prediction errors than the existing method.","PeriodicalId":196081,"journal":{"name":"2017 International Electrical Engineering Congress (iEECON)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The variable forgetting factor-based local average model algorithm for prediction of financial time series\",\"authors\":\"P. Intachai, P. Yuvapoositanon\",\"doi\":\"10.1109/IEECON.2017.8075876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a variable forgetting factor-based local average model for estimation of future values of financial time series. The forgetting factor is applied to the existing local average model to govern the weights of past records for the estimation of the future records. By using the trend direction from the turning points of the financial time series, the value of the forgetting factor can be estimated. The results of performance comparison between the proposed variable forgetting factor-based local average model and the original local average model on the actual time series derived from the stocks listed in the Stock Exchange of Thailand are shown. The results suggest that the proposed method offers consistent less prediction errors than the existing method.\",\"PeriodicalId\":196081,\"journal\":{\"name\":\"2017 International Electrical Engineering Congress (iEECON)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Electrical Engineering Congress (iEECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEECON.2017.8075876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2017.8075876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于变量遗忘因子的局部平均模型来估计金融时间序列的未来值。将遗忘因子应用于已有的局部平均模型来控制过去记录的权重,以便对未来记录进行估计。利用金融时间序列拐点的趋势方向,可以估计出遗忘因子的值。本文给出了基于变量遗忘因子的局部平均模型与原始局部平均模型在泰国证券交易所上市股票的实际时间序列上的性能比较结果。结果表明,该方法与现有方法相比具有一致性和较小的预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The variable forgetting factor-based local average model algorithm for prediction of financial time series
In this paper, we propose a variable forgetting factor-based local average model for estimation of future values of financial time series. The forgetting factor is applied to the existing local average model to govern the weights of past records for the estimation of the future records. By using the trend direction from the turning points of the financial time series, the value of the forgetting factor can be estimated. The results of performance comparison between the proposed variable forgetting factor-based local average model and the original local average model on the actual time series derived from the stocks listed in the Stock Exchange of Thailand are shown. The results suggest that the proposed method offers consistent less prediction errors than the existing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信