用于NAND快闪记忆体制造过程异常侦测的晶圆模式识别

Jeongin Choe, Taehyeon Kim, Saetbyeol Yoon, Sangyong Yoon, Ki-Whan Song, J. Song, Myungsuk Kim, Woo Young Choi
{"title":"用于NAND快闪记忆体制造过程异常侦测的晶圆模式识别","authors":"Jeongin Choe, Taehyeon Kim, Saetbyeol Yoon, Sangyong Yoon, Ki-Whan Song, J. Song, Myungsuk Kim, Woo Young Choi","doi":"10.31399/asm.cp.istfa2021p0406","DOIUrl":null,"url":null,"abstract":"\n We have adopted various defect detection systems in the front stage of manufacturing in order to effectively manage the quality of flash memory products. In this paper, we propose an intelligent pattern recognition methodology which enables us to discriminate abnormal wafer automatically in the course of NAND flash memory manufacturing. Our proposed technique consists of the two steps: pre-processing and hybrid clustering. The pre-processing step based on process primitives efficiently eliminates noisy data. Then, the hybrid clustering step dramatically reduces the total amount of computing, which makes our technique practical for the mass production of NAND flash memory.","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wafer Pattern Recognition for Detecting Process Abnormalities in NAND Flash Memory Manufacturing\",\"authors\":\"Jeongin Choe, Taehyeon Kim, Saetbyeol Yoon, Sangyong Yoon, Ki-Whan Song, J. Song, Myungsuk Kim, Woo Young Choi\",\"doi\":\"10.31399/asm.cp.istfa2021p0406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We have adopted various defect detection systems in the front stage of manufacturing in order to effectively manage the quality of flash memory products. In this paper, we propose an intelligent pattern recognition methodology which enables us to discriminate abnormal wafer automatically in the course of NAND flash memory manufacturing. Our proposed technique consists of the two steps: pre-processing and hybrid clustering. The pre-processing step based on process primitives efficiently eliminates noisy data. Then, the hybrid clustering step dramatically reduces the total amount of computing, which makes our technique practical for the mass production of NAND flash memory.\",\"PeriodicalId\":188323,\"journal\":{\"name\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2021p0406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了有效地管理闪存产品的质量,我们在制造前期采用了各种缺陷检测系统。本文提出了一种智能模式识别方法,可以自动识别NAND闪存制造过程中的异常晶圆。我们提出的技术包括两个步骤:预处理和混合聚类。基于过程原语的预处理步骤有效地消除了噪声数据。然后,混合聚类步骤大大减少了计算总量,使我们的技术对NAND闪存的批量生产具有实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wafer Pattern Recognition for Detecting Process Abnormalities in NAND Flash Memory Manufacturing
We have adopted various defect detection systems in the front stage of manufacturing in order to effectively manage the quality of flash memory products. In this paper, we propose an intelligent pattern recognition methodology which enables us to discriminate abnormal wafer automatically in the course of NAND flash memory manufacturing. Our proposed technique consists of the two steps: pre-processing and hybrid clustering. The pre-processing step based on process primitives efficiently eliminates noisy data. Then, the hybrid clustering step dramatically reduces the total amount of computing, which makes our technique practical for the mass production of NAND flash memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信