高效视频训练的协同时空精馏

Yuzhang Hu, Minghao Liu, Wenhan Yang, Jiaying Liu, Zongming Guo
{"title":"高效视频训练的协同时空精馏","authors":"Yuzhang Hu, Minghao Liu, Wenhan Yang, Jiaying Liu, Zongming Guo","doi":"10.1109/ICME55011.2023.00332","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel knowledge distillation framework to improve the efficiency of deep networks for video deraining. The knowledge is transferred from a large-scale powerful teacher network to a compact efficient student network via the proposed collaborative spatial-temporal distillation framework. The framework is equipped with three collaboration schemes of different granularities that make use of spatial-temporal redundancy in a complementary way for better distillation performance. First, the spatial alignment module applies distillation constraints at different spatial scales to achieve better scale invariance in transferred knowledge. Second, the temporal alignment module traces both temporal status between teacher and student separately and collaboratively, to comprehensively utilize inter-frame information. Third, these two alignment modules interact through a spatial-temporal adaptor, where spatial-temporal knowledge is transferred in a unified framework. Extensive experiments demonstrate the superiority of our distillation framework as well as the effectiveness of each module. Our code is available at: https://github.com/HuYuzhang/Knowledge-Distillation.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Spatial-Temporal Distillation for Efficient Video Deraining\",\"authors\":\"Yuzhang Hu, Minghao Liu, Wenhan Yang, Jiaying Liu, Zongming Guo\",\"doi\":\"10.1109/ICME55011.2023.00332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel knowledge distillation framework to improve the efficiency of deep networks for video deraining. The knowledge is transferred from a large-scale powerful teacher network to a compact efficient student network via the proposed collaborative spatial-temporal distillation framework. The framework is equipped with three collaboration schemes of different granularities that make use of spatial-temporal redundancy in a complementary way for better distillation performance. First, the spatial alignment module applies distillation constraints at different spatial scales to achieve better scale invariance in transferred knowledge. Second, the temporal alignment module traces both temporal status between teacher and student separately and collaboratively, to comprehensively utilize inter-frame information. Third, these two alignment modules interact through a spatial-temporal adaptor, where spatial-temporal knowledge is transferred in a unified framework. Extensive experiments demonstrate the superiority of our distillation framework as well as the effectiveness of each module. Our code is available at: https://github.com/HuYuzhang/Knowledge-Distillation.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高深度网络视频训练的效率,本文提出了一种新的知识蒸馏框架。通过提出的协作时空蒸馏框架,将知识从强大的大规模教师网络转移到紧凑高效的学生网络。该框架配备了三种不同粒度的协作方案,以互补的方式利用时空冗余以获得更好的蒸馏性能。首先,空间对齐模块在不同的空间尺度上应用蒸馏约束,使转移知识具有更好的尺度不变性。其次,时间对齐模块对师生之间的时间状态进行单独和协同跟踪,综合利用帧间信息。第三,这两个对齐模块通过一个时空适配器相互作用,将时空知识在一个统一的框架中传递。大量的实验证明了我们的蒸馏框架的优越性以及各个模块的有效性。我们的代码可在:https://github.com/HuYuzhang/Knowledge-Distillation。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Spatial-Temporal Distillation for Efficient Video Deraining
In this paper, we propose a novel knowledge distillation framework to improve the efficiency of deep networks for video deraining. The knowledge is transferred from a large-scale powerful teacher network to a compact efficient student network via the proposed collaborative spatial-temporal distillation framework. The framework is equipped with three collaboration schemes of different granularities that make use of spatial-temporal redundancy in a complementary way for better distillation performance. First, the spatial alignment module applies distillation constraints at different spatial scales to achieve better scale invariance in transferred knowledge. Second, the temporal alignment module traces both temporal status between teacher and student separately and collaboratively, to comprehensively utilize inter-frame information. Third, these two alignment modules interact through a spatial-temporal adaptor, where spatial-temporal knowledge is transferred in a unified framework. Extensive experiments demonstrate the superiority of our distillation framework as well as the effectiveness of each module. Our code is available at: https://github.com/HuYuzhang/Knowledge-Distillation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信