碳纳米管在低功率纳米电子学中的应用分析

Singh Yadav Pradeep, Chandrakar Chinmay, K. S. Anil
{"title":"碳纳米管在低功率纳米电子学中的应用分析","authors":"Singh Yadav Pradeep, Chandrakar Chinmay, K. S. Anil","doi":"10.26634/jele.13.2.19383","DOIUrl":null,"url":null,"abstract":"The implementation of nanoelectronic circuits depends on technologies such as Complementary Metal-Oxide Semiconductor (CMOS) or Bipolar CMOS (BICMOS), and the length of the channel can be reduced up to a certain limit. Due to the generation of various errors nanomaterials can be an alternative solution for circuit design. In the field of nanotechnology, Carbon Nanotubes (CNTs) have become a notable and remarkable invention. Their structure is very similar to that of graphite, and its small size, lightweight, high strength, and good conductivity make them ideal building blocks for future technologies. CNTs hold great promise for being the catalyst for the next technological revolution. Today, a broad range of processes is available to produce various types of CNTs, depending on the rolling times of graphite sheets. This review paper sheds light on the different types of CNTs, their properties, methods of synthesis such as arc discharge and chemical vapor deposition, and their applications. To achieve this goal, this paper provides a review that aims to define the state-of-the-art in this field from a novel and unified perspective while elaborating insights of current developments and emerging trends.","PeriodicalId":362326,"journal":{"name":"i-manager’s Journal on Electronics Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of carbon nanotube for low power nano electronics applications\",\"authors\":\"Singh Yadav Pradeep, Chandrakar Chinmay, K. S. Anil\",\"doi\":\"10.26634/jele.13.2.19383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of nanoelectronic circuits depends on technologies such as Complementary Metal-Oxide Semiconductor (CMOS) or Bipolar CMOS (BICMOS), and the length of the channel can be reduced up to a certain limit. Due to the generation of various errors nanomaterials can be an alternative solution for circuit design. In the field of nanotechnology, Carbon Nanotubes (CNTs) have become a notable and remarkable invention. Their structure is very similar to that of graphite, and its small size, lightweight, high strength, and good conductivity make them ideal building blocks for future technologies. CNTs hold great promise for being the catalyst for the next technological revolution. Today, a broad range of processes is available to produce various types of CNTs, depending on the rolling times of graphite sheets. This review paper sheds light on the different types of CNTs, their properties, methods of synthesis such as arc discharge and chemical vapor deposition, and their applications. To achieve this goal, this paper provides a review that aims to define the state-of-the-art in this field from a novel and unified perspective while elaborating insights of current developments and emerging trends.\",\"PeriodicalId\":362326,\"journal\":{\"name\":\"i-manager’s Journal on Electronics Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager’s Journal on Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jele.13.2.19383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager’s Journal on Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jele.13.2.19383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米电子电路的实现依赖于互补金属氧化物半导体(CMOS)或双极CMOS (BICMOS)等技术,通道长度可以减少到一定限度。由于各种误差的产生,纳米材料可以成为电路设计的替代解决方案。在纳米技术领域,碳纳米管(Carbon Nanotubes, CNTs)是一项引人注目的发明。它们的结构与石墨非常相似,体积小、重量轻、强度高、导电性好,使它们成为未来技术的理想基石。碳纳米管有望成为下一次技术革命的催化剂。今天,根据石墨片的轧制时间,有多种工艺可用于生产各种类型的碳纳米管。本文综述了碳纳米管的种类、性质、电弧放电和化学气相沉积等合成方法及其应用。为了实现这一目标,本文提供了一篇综述,旨在从一个新颖和统一的角度定义该领域的最新技术,同时阐述当前发展和新兴趋势的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of carbon nanotube for low power nano electronics applications
The implementation of nanoelectronic circuits depends on technologies such as Complementary Metal-Oxide Semiconductor (CMOS) or Bipolar CMOS (BICMOS), and the length of the channel can be reduced up to a certain limit. Due to the generation of various errors nanomaterials can be an alternative solution for circuit design. In the field of nanotechnology, Carbon Nanotubes (CNTs) have become a notable and remarkable invention. Their structure is very similar to that of graphite, and its small size, lightweight, high strength, and good conductivity make them ideal building blocks for future technologies. CNTs hold great promise for being the catalyst for the next technological revolution. Today, a broad range of processes is available to produce various types of CNTs, depending on the rolling times of graphite sheets. This review paper sheds light on the different types of CNTs, their properties, methods of synthesis such as arc discharge and chemical vapor deposition, and their applications. To achieve this goal, this paper provides a review that aims to define the state-of-the-art in this field from a novel and unified perspective while elaborating insights of current developments and emerging trends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信