利用自举数据组合改进微阵列样本大小

J. Phan, R. Moffitt, A. B. Barrett, May D. Wang
{"title":"利用自举数据组合改进微阵列样本大小","authors":"J. Phan, R. Moffitt, A. B. Barrett, May D. Wang","doi":"10.1109/IMSCCS.2008.36","DOIUrl":null,"url":null,"abstract":"Microarray technology has enabled us to simultaneously measure the expression of thousands of genes. Using this high-throughput technology, we can examine subtle genetic changes between biological samples and build predictive models for clinical applications. Although microarrays have dramatically increased the rate of data collection, sample size is still a major issue when selecting features. Previous methods show that combining multiple microarray datasets improves feature selection using simple methods such as fold change. We propose a wrapper-based gene selection technique that combines bootstrap estimated classification errors for individual genes across multiple datasets and reduces the contribution of datasets with high variance. We use the bootstrap because it is an unbiased estimator of classification error that is also effective for small sample data. Coupled with data combination across multiple datasets, we show that our meta-analytic approach improves the biological relevance of gene selection using prostate and renal cancer microarray data.","PeriodicalId":122953,"journal":{"name":"2008 International Multi-symposiums on Computer and Computational Sciences","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving Microarray Sample Size Using Bootstrap Data Combination\",\"authors\":\"J. Phan, R. Moffitt, A. B. Barrett, May D. Wang\",\"doi\":\"10.1109/IMSCCS.2008.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray technology has enabled us to simultaneously measure the expression of thousands of genes. Using this high-throughput technology, we can examine subtle genetic changes between biological samples and build predictive models for clinical applications. Although microarrays have dramatically increased the rate of data collection, sample size is still a major issue when selecting features. Previous methods show that combining multiple microarray datasets improves feature selection using simple methods such as fold change. We propose a wrapper-based gene selection technique that combines bootstrap estimated classification errors for individual genes across multiple datasets and reduces the contribution of datasets with high variance. We use the bootstrap because it is an unbiased estimator of classification error that is also effective for small sample data. Coupled with data combination across multiple datasets, we show that our meta-analytic approach improves the biological relevance of gene selection using prostate and renal cancer microarray data.\",\"PeriodicalId\":122953,\"journal\":{\"name\":\"2008 International Multi-symposiums on Computer and Computational Sciences\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Multi-symposiums on Computer and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMSCCS.2008.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Multi-symposiums on Computer and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2008.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

微阵列技术使我们能够同时测量数千个基因的表达。利用这种高通量技术,我们可以检查生物样本之间细微的遗传变化,并为临床应用建立预测模型。虽然微阵列极大地提高了数据收集的速度,但在选择特征时,样本大小仍然是一个主要问题。以前的方法表明,结合多个微阵列数据集可以使用简单的方法(如折叠变化)改善特征选择。我们提出了一种基于包装的基因选择技术,该技术结合了多个数据集上单个基因的自举估计分类误差,并减少了高方差数据集的贡献。我们使用自举是因为它是一种无偏的分类误差估计,对小样本数据也有效。结合多个数据集的数据组合,我们表明我们的荟萃分析方法提高了使用前列腺癌和肾癌微阵列数据的基因选择的生物学相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Microarray Sample Size Using Bootstrap Data Combination
Microarray technology has enabled us to simultaneously measure the expression of thousands of genes. Using this high-throughput technology, we can examine subtle genetic changes between biological samples and build predictive models for clinical applications. Although microarrays have dramatically increased the rate of data collection, sample size is still a major issue when selecting features. Previous methods show that combining multiple microarray datasets improves feature selection using simple methods such as fold change. We propose a wrapper-based gene selection technique that combines bootstrap estimated classification errors for individual genes across multiple datasets and reduces the contribution of datasets with high variance. We use the bootstrap because it is an unbiased estimator of classification error that is also effective for small sample data. Coupled with data combination across multiple datasets, we show that our meta-analytic approach improves the biological relevance of gene selection using prostate and renal cancer microarray data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信