{"title":"模糊关联规则挖掘中t规范的快速评价","authors":"M. Burda","doi":"10.1109/CINTI.2013.6705242","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present a bitwise approach on evaluation of fuzzy t-norms. T-norms are functions that generalize the notion of conjunction, and as such play an important role in fuzzy association rule mining process. Efficient algorithms for batch evaluation of the most common t-norms is proposed that minimizes computation time as well as memory space requirements at the cost of user-adjustable loss of precision of the membership degrees.","PeriodicalId":439949,"journal":{"name":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast evaluation of t-norms for fuzzy association rules mining\",\"authors\":\"M. Burda\",\"doi\":\"10.1109/CINTI.2013.6705242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to present a bitwise approach on evaluation of fuzzy t-norms. T-norms are functions that generalize the notion of conjunction, and as such play an important role in fuzzy association rule mining process. Efficient algorithms for batch evaluation of the most common t-norms is proposed that minimizes computation time as well as memory space requirements at the cost of user-adjustable loss of precision of the membership degrees.\",\"PeriodicalId\":439949,\"journal\":{\"name\":\"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI.2013.6705242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI.2013.6705242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast evaluation of t-norms for fuzzy association rules mining
The aim of this paper is to present a bitwise approach on evaluation of fuzzy t-norms. T-norms are functions that generalize the notion of conjunction, and as such play an important role in fuzzy association rule mining process. Efficient algorithms for batch evaluation of the most common t-norms is proposed that minimizes computation time as well as memory space requirements at the cost of user-adjustable loss of precision of the membership degrees.