{"title":"使用乘积码的快速压缩大规模矩阵-矩阵乘法","authors":"Orhan Ocal, K. Ramchandran","doi":"10.1109/ISIT44484.2020.9173951","DOIUrl":null,"url":null,"abstract":"Matrix-matrix multiplication and its derivatives are fundamental linear-algebraic primitives at the core of many modern optimization and machine learning algorithms. We design a new and novel framework for speeding up large-scale matrix-matrix multiplication when the output matrix is known to be sparse, as is true in many applications of interest. Our solution is based on a novel use of product codes which have been studied in the communications literature. In particular, when multiplying two matrices of sizes n × d and d n where the output matrix is (exactly) K-sparse with support× uniformly distributed, our algorithm requires max(O(dK), O(dn)) computations. We also extend our framework to handle the approximately-sparse setting where the output matrix has K-entries that are significantly larger than the rest. In this case, the computational complexity is max(O(dK log2(n)), O(dn log2(n))). We corroborate our findings with numerical simulations that validate our claims.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Compressive Large-Scale Matrix-Matrix Multiplication Using Product Codes\",\"authors\":\"Orhan Ocal, K. Ramchandran\",\"doi\":\"10.1109/ISIT44484.2020.9173951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix-matrix multiplication and its derivatives are fundamental linear-algebraic primitives at the core of many modern optimization and machine learning algorithms. We design a new and novel framework for speeding up large-scale matrix-matrix multiplication when the output matrix is known to be sparse, as is true in many applications of interest. Our solution is based on a novel use of product codes which have been studied in the communications literature. In particular, when multiplying two matrices of sizes n × d and d n where the output matrix is (exactly) K-sparse with support× uniformly distributed, our algorithm requires max(O(dK), O(dn)) computations. We also extend our framework to handle the approximately-sparse setting where the output matrix has K-entries that are significantly larger than the rest. In this case, the computational complexity is max(O(dK log2(n)), O(dn log2(n))). We corroborate our findings with numerical simulations that validate our claims.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9173951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9173951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Compressive Large-Scale Matrix-Matrix Multiplication Using Product Codes
Matrix-matrix multiplication and its derivatives are fundamental linear-algebraic primitives at the core of many modern optimization and machine learning algorithms. We design a new and novel framework for speeding up large-scale matrix-matrix multiplication when the output matrix is known to be sparse, as is true in many applications of interest. Our solution is based on a novel use of product codes which have been studied in the communications literature. In particular, when multiplying two matrices of sizes n × d and d n where the output matrix is (exactly) K-sparse with support× uniformly distributed, our algorithm requires max(O(dK), O(dn)) computations. We also extend our framework to handle the approximately-sparse setting where the output matrix has K-entries that are significantly larger than the rest. In this case, the computational complexity is max(O(dK log2(n)), O(dn log2(n))). We corroborate our findings with numerical simulations that validate our claims.