{"title":"复杂非线性系统多模型表示中模型基构造的优化过程","authors":"B. Hichem, M. Faouzi","doi":"10.5772/INTECHOPEN.96458","DOIUrl":null,"url":null,"abstract":"The multimodel approach is a research subject developed for modeling, analysis and control of complex systems. This approach supposes the definition of a set of simple models forming a model’s library. The number of models and the contribution of their validities is the main issues to consider in the multimodel approach. In this chapter, a new theoretical technique has been developed for this purpose based on a combination of probabilistic approaches with different objective function. First, the number of model is constructed using neural network and fuzzy logic. Indeed, the number of models is determined using frequency-sensitive competitive learning algorithm (FSCL) and the operating clusters are identified using Fuzzy K- means algorithm. Second, the Models’ base number is reduced. Focusing on the use of both two type of validity calculation for each model and a stochastic SVD technique is used to evaluate their contribution and permits the reduction of the Models’ base number. The combination of FSCL algorithms, K-means and the SVD technique for the proposed concept is considered as a deterministic approach discussed in this chapter has the potential to be applied to complex nonlinear systems with dynamic rapid. The recommended approach is implemented, reviewed and compared to academic benchmark and semi-batch reactor, the results in Models’ base reduction is very important witch gives a good performance in modeling.","PeriodicalId":340860,"journal":{"name":"Optimization Problems in Engineering [Working Title]","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimization Procedure of Model’s Base Construction in Multimodel Representation of Complex Nonlinear Systems\",\"authors\":\"B. Hichem, M. Faouzi\",\"doi\":\"10.5772/INTECHOPEN.96458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multimodel approach is a research subject developed for modeling, analysis and control of complex systems. This approach supposes the definition of a set of simple models forming a model’s library. The number of models and the contribution of their validities is the main issues to consider in the multimodel approach. In this chapter, a new theoretical technique has been developed for this purpose based on a combination of probabilistic approaches with different objective function. First, the number of model is constructed using neural network and fuzzy logic. Indeed, the number of models is determined using frequency-sensitive competitive learning algorithm (FSCL) and the operating clusters are identified using Fuzzy K- means algorithm. Second, the Models’ base number is reduced. Focusing on the use of both two type of validity calculation for each model and a stochastic SVD technique is used to evaluate their contribution and permits the reduction of the Models’ base number. The combination of FSCL algorithms, K-means and the SVD technique for the proposed concept is considered as a deterministic approach discussed in this chapter has the potential to be applied to complex nonlinear systems with dynamic rapid. The recommended approach is implemented, reviewed and compared to academic benchmark and semi-batch reactor, the results in Models’ base reduction is very important witch gives a good performance in modeling.\",\"PeriodicalId\":340860,\"journal\":{\"name\":\"Optimization Problems in Engineering [Working Title]\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Problems in Engineering [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.96458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Problems in Engineering [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.96458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Optimization Procedure of Model’s Base Construction in Multimodel Representation of Complex Nonlinear Systems
The multimodel approach is a research subject developed for modeling, analysis and control of complex systems. This approach supposes the definition of a set of simple models forming a model’s library. The number of models and the contribution of their validities is the main issues to consider in the multimodel approach. In this chapter, a new theoretical technique has been developed for this purpose based on a combination of probabilistic approaches with different objective function. First, the number of model is constructed using neural network and fuzzy logic. Indeed, the number of models is determined using frequency-sensitive competitive learning algorithm (FSCL) and the operating clusters are identified using Fuzzy K- means algorithm. Second, the Models’ base number is reduced. Focusing on the use of both two type of validity calculation for each model and a stochastic SVD technique is used to evaluate their contribution and permits the reduction of the Models’ base number. The combination of FSCL algorithms, K-means and the SVD technique for the proposed concept is considered as a deterministic approach discussed in this chapter has the potential to be applied to complex nonlinear systems with dynamic rapid. The recommended approach is implemented, reviewed and compared to academic benchmark and semi-batch reactor, the results in Models’ base reduction is very important witch gives a good performance in modeling.