Kähler流形的几何多势理论

Tam'as Darvas
{"title":"Kähler流形的几何多势理论","authors":"Tam'as Darvas","doi":"10.1090/conm/735/14822","DOIUrl":null,"url":null,"abstract":"Finite energy pluripotential theory accommodates the variational theory of equations of complex Monge-Amp\\`ere type arising in K\\\"ahler geometry. Recently it has been discovered that many of the potential spaces involved have a rich metric geometry, effectively turning the variational problems in question into problems of infinite dimensional convex optimization, yielding existence results for solutions of the underlying complex Monge-Amp\\`ere equations. The purpose of this survey is to describe these developments from basic principles.","PeriodicalId":139005,"journal":{"name":"Advances in Complex Geometry","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Geometric pluripotential theory on Kähler\\n manifolds\",\"authors\":\"Tam'as Darvas\",\"doi\":\"10.1090/conm/735/14822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite energy pluripotential theory accommodates the variational theory of equations of complex Monge-Amp\\\\`ere type arising in K\\\\\\\"ahler geometry. Recently it has been discovered that many of the potential spaces involved have a rich metric geometry, effectively turning the variational problems in question into problems of infinite dimensional convex optimization, yielding existence results for solutions of the underlying complex Monge-Amp\\\\`ere equations. The purpose of this survey is to describe these developments from basic principles.\",\"PeriodicalId\":139005,\"journal\":{\"name\":\"Advances in Complex Geometry\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/735/14822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/735/14822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

有限能量多势理论适用于K\ ahler几何中出现的复Monge-Amp ' ere型方程的变分理论。最近,人们发现许多潜在空间具有丰富的度量几何,有效地将所讨论的变分问题转化为无限维凸优化问题,并给出了底层复杂Monge-Amp\ ' ere方程解的存在性结果。这次调查的目的是从基本原则出发来描述这些发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric pluripotential theory on Kähler manifolds
Finite energy pluripotential theory accommodates the variational theory of equations of complex Monge-Amp\`ere type arising in K\"ahler geometry. Recently it has been discovered that many of the potential spaces involved have a rich metric geometry, effectively turning the variational problems in question into problems of infinite dimensional convex optimization, yielding existence results for solutions of the underlying complex Monge-Amp\`ere equations. The purpose of this survey is to describe these developments from basic principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信