基于多形态特征和运动分析的老年人跌倒检测系统

K. Sehairi, F. Chouireb, J. Meunier
{"title":"基于多形态特征和运动分析的老年人跌倒检测系统","authors":"K. Sehairi, F. Chouireb, J. Meunier","doi":"10.1109/ISACV.2018.8354084","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent video-based fall detection system. First, the silhouette of a person is extracted using a background subtraction technique, then a set of features is measured to define if a fall happened, for that a new technique is presented to estimate the head position, and a finite state machine (FSM) is used in the aim to compute the vertical velocity of the head. This algorithm is tested on the L2ei dataset where more than 2700 frames have been labelled in order to train three different classifiers. The results show that our system can predict the correct class with an accuracy that can reach up to 99.61% with a maximum global error of 1.5%.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Elderly fall detection system based on multiple shape features and motion analysis\",\"authors\":\"K. Sehairi, F. Chouireb, J. Meunier\",\"doi\":\"10.1109/ISACV.2018.8354084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent video-based fall detection system. First, the silhouette of a person is extracted using a background subtraction technique, then a set of features is measured to define if a fall happened, for that a new technique is presented to estimate the head position, and a finite state machine (FSM) is used in the aim to compute the vertical velocity of the head. This algorithm is tested on the L2ei dataset where more than 2700 frames have been labelled in order to train three different classifiers. The results show that our system can predict the correct class with an accuracy that can reach up to 99.61% with a maximum global error of 1.5%.\",\"PeriodicalId\":184662,\"journal\":{\"name\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACV.2018.8354084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

提出了一种基于视频的智能跌倒检测系统。该方法首先利用背景减法提取人体轮廓,然后测量一组特征来确定是否发生了跌倒,为此提出了一种新的头部位置估计技术,并利用有限状态机计算头部的垂直速度。该算法在L2ei数据集上进行了测试,其中超过2700帧已被标记,以训练三种不同的分类器。结果表明,该系统可以预测正确的类别,准确率高达99.61%,最大全局误差为1.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elderly fall detection system based on multiple shape features and motion analysis
This paper presents an intelligent video-based fall detection system. First, the silhouette of a person is extracted using a background subtraction technique, then a set of features is measured to define if a fall happened, for that a new technique is presented to estimate the head position, and a finite state machine (FSM) is used in the aim to compute the vertical velocity of the head. This algorithm is tested on the L2ei dataset where more than 2700 frames have been labelled in order to train three different classifiers. The results show that our system can predict the correct class with an accuracy that can reach up to 99.61% with a maximum global error of 1.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信