掩盖被困在闪存中的电荷

A. Wachter-Zeh, Eitan Yaakobi
{"title":"掩盖被困在闪存中的电荷","authors":"A. Wachter-Zeh, Eitan Yaakobi","doi":"10.1109/ALLERTON.2015.7447072","DOIUrl":null,"url":null,"abstract":"This paper studies defect memory cells and in particular partially stuck-at memory cells, which occur when charge is trapped in multi-level cells of non-volatile memories such as flash memories. If a cell can store the q levels 0, 1, ..., q - 1, we say that it is partially stuck-at level s, where 1 ≤ s ≤ q - 1, if it can only store values which are at least s. We follow the common setup where the encoder knows the positions and levels of the partially stuck-at cells whereas the decoder does not. In this paper, we study codes for masking u partially stuck-at cells. We derive lower and upper bounds on the redundancy of such codes and present code constructions. Furthermore, we analyze the dual defect model in which cells cannot reach higher levels, and show that codes for partially stuck-at cells can be used to mask this type of defects as well. Lastly, we analyze the capacity of the partially stuck-at memory channel and study how far our constructions are from the capacity.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Masking trapped charge in flash memories\",\"authors\":\"A. Wachter-Zeh, Eitan Yaakobi\",\"doi\":\"10.1109/ALLERTON.2015.7447072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies defect memory cells and in particular partially stuck-at memory cells, which occur when charge is trapped in multi-level cells of non-volatile memories such as flash memories. If a cell can store the q levels 0, 1, ..., q - 1, we say that it is partially stuck-at level s, where 1 ≤ s ≤ q - 1, if it can only store values which are at least s. We follow the common setup where the encoder knows the positions and levels of the partially stuck-at cells whereas the decoder does not. In this paper, we study codes for masking u partially stuck-at cells. We derive lower and upper bounds on the redundancy of such codes and present code constructions. Furthermore, we analyze the dual defect model in which cells cannot reach higher levels, and show that codes for partially stuck-at cells can be used to mask this type of defects as well. Lastly, we analyze the capacity of the partially stuck-at memory channel and study how far our constructions are from the capacity.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非易失性存储器(如快闪存储器)中电荷被困在多层存储单元中的缺陷存储单元,特别是部分卡在存储单元。如果一个单元可以存储q级0,1,…, q - 1,我们说它是部分卡在水平s,其中1≤s≤q - 1,如果它只能存储至少为s的值。我们遵循常见的设置,其中编码器知道部分卡在细胞的位置和水平,而解码器不知道。在本文中,我们研究了掩码部分卡住的单元。我们推导了这类码的冗余度的下界和上界,并给出了码的结构。此外,我们分析了双重缺陷模型,其中细胞不能达到更高的水平,并表明部分卡住的细胞的代码也可以用来掩盖这种类型的缺陷。最后,我们分析了部分卡住的存储通道的容量,并研究了我们的结构离容量有多远。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Masking trapped charge in flash memories
This paper studies defect memory cells and in particular partially stuck-at memory cells, which occur when charge is trapped in multi-level cells of non-volatile memories such as flash memories. If a cell can store the q levels 0, 1, ..., q - 1, we say that it is partially stuck-at level s, where 1 ≤ s ≤ q - 1, if it can only store values which are at least s. We follow the common setup where the encoder knows the positions and levels of the partially stuck-at cells whereas the decoder does not. In this paper, we study codes for masking u partially stuck-at cells. We derive lower and upper bounds on the redundancy of such codes and present code constructions. Furthermore, we analyze the dual defect model in which cells cannot reach higher levels, and show that codes for partially stuck-at cells can be used to mask this type of defects as well. Lastly, we analyze the capacity of the partially stuck-at memory channel and study how far our constructions are from the capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信