局部放电源的随机森林分类

Senlin Pu, Huajun Zhang, Cuimin Mao, Guang Yang
{"title":"局部放电源的随机森林分类","authors":"Senlin Pu, Huajun Zhang, Cuimin Mao, Guang Yang","doi":"10.1109/CCDC52312.2021.9602056","DOIUrl":null,"url":null,"abstract":"The identification of Partial Discharge Sources (PD) is an important task in the monitoring and diagnosis of high voltage components, and the classification of their discharge sources is extremely important. In this paper, three major features of Partial Discharge Sources have been extracted and various machine learning algorithms are applied to classify them. The final experiments in implementing the classification of partial discharge sources show that Random Forest is more robust to noise compared to decision trees and AdaBoost, and runs at a speed comparable to AdaBoost.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification based on random forest for partial discharge sources\",\"authors\":\"Senlin Pu, Huajun Zhang, Cuimin Mao, Guang Yang\",\"doi\":\"10.1109/CCDC52312.2021.9602056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of Partial Discharge Sources (PD) is an important task in the monitoring and diagnosis of high voltage components, and the classification of their discharge sources is extremely important. In this paper, three major features of Partial Discharge Sources have been extracted and various machine learning algorithms are applied to classify them. The final experiments in implementing the classification of partial discharge sources show that Random Forest is more robust to noise compared to decision trees and AdaBoost, and runs at a speed comparable to AdaBoost.\",\"PeriodicalId\":143976,\"journal\":{\"name\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC52312.2021.9602056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9602056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部放电源的识别是高压元器件监测与诊断中的一项重要工作,而对其放电源进行分类是十分重要的。本文提取了局部放电源的三个主要特征,并应用各种机器学习算法对其进行分类。最后的局部放电源分类实验表明,Random Forest对噪声的鲁棒性优于决策树和AdaBoost,并且运行速度与AdaBoost相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification based on random forest for partial discharge sources
The identification of Partial Discharge Sources (PD) is an important task in the monitoring and diagnosis of high voltage components, and the classification of their discharge sources is extremely important. In this paper, three major features of Partial Discharge Sources have been extracted and various machine learning algorithms are applied to classify them. The final experiments in implementing the classification of partial discharge sources show that Random Forest is more robust to noise compared to decision trees and AdaBoost, and runs at a speed comparable to AdaBoost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信