基于中程磁感应的无线地下传感器网络策略频率自适应

Agnelo R. Silva, M. Moghaddam
{"title":"基于中程磁感应的无线地下传感器网络策略频率自适应","authors":"Agnelo R. Silva, M. Moghaddam","doi":"10.1109/SYSCON.2015.7116842","DOIUrl":null,"url":null,"abstract":"Some classes of sensing applications target scenarios where the overall system, including antenna and energy sub-system, is placed under the ground, through concrete, or under-the-debris (disaster scenario). A real-time soil moisture sensing system deployed at the root zone of a crop area for precise irrigation and an oil pipeline leak detection (PLD) system are particular examples of interest discussed in this work. Communication solutions for these scenarios have been recently investigated in the Wireless Underground Sensor Networks (WUSN) literature and magnetic induction (MI) technology is usually regarded as the best candidate for low-power and mid-range (i.e., 15..30m) wireless underground communication. Nonetheless, underground MI systems are still significantly impacted by changes at the electrical properties of the medium surrounding the MI nodes, such as due to the soil moisture variability. The design of a MI system for the worst-case scenario (e.g., high soil moisture) is a strategic approach but it may significantly reduce the application bandwidth. Therefore, the dynamic frequency adaptation has the potential of balancing robustness and higher bandwidth for MI-WUSNs. In this work, a novel design procedure is proposed for the optimization problem of selecting the proper operational frequency for MI-WUSN nodes according to the medium conditions.","PeriodicalId":251318,"journal":{"name":"2015 Annual IEEE Systems Conference (SysCon) Proceedings","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Strategic frequency adaptation for mid-range magnetic induction-based Wireless Underground Sensor Networks\",\"authors\":\"Agnelo R. Silva, M. Moghaddam\",\"doi\":\"10.1109/SYSCON.2015.7116842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some classes of sensing applications target scenarios where the overall system, including antenna and energy sub-system, is placed under the ground, through concrete, or under-the-debris (disaster scenario). A real-time soil moisture sensing system deployed at the root zone of a crop area for precise irrigation and an oil pipeline leak detection (PLD) system are particular examples of interest discussed in this work. Communication solutions for these scenarios have been recently investigated in the Wireless Underground Sensor Networks (WUSN) literature and magnetic induction (MI) technology is usually regarded as the best candidate for low-power and mid-range (i.e., 15..30m) wireless underground communication. Nonetheless, underground MI systems are still significantly impacted by changes at the electrical properties of the medium surrounding the MI nodes, such as due to the soil moisture variability. The design of a MI system for the worst-case scenario (e.g., high soil moisture) is a strategic approach but it may significantly reduce the application bandwidth. Therefore, the dynamic frequency adaptation has the potential of balancing robustness and higher bandwidth for MI-WUSNs. In this work, a novel design procedure is proposed for the optimization problem of selecting the proper operational frequency for MI-WUSN nodes according to the medium conditions.\",\"PeriodicalId\":251318,\"journal\":{\"name\":\"2015 Annual IEEE Systems Conference (SysCon) Proceedings\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Annual IEEE Systems Conference (SysCon) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYSCON.2015.7116842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Annual IEEE Systems Conference (SysCon) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSCON.2015.7116842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

某些类型的传感应用的目标场景是,整个系统,包括天线和能源子系统,被放置在地下,通过混凝土,或在碎片(灾难场景)下。用于精确灌溉的实时土壤湿度传感系统部署在作物区域的根区,石油管道泄漏检测(PLD)系统是本工作中讨论的具体示例。这些场景的通信解决方案最近在无线地下传感器网络(WUSN)文献中进行了研究,磁感应(MI)技术通常被认为是低功耗和中距离(即15…30米)无线地下通信的最佳选择。尽管如此,地下MI系统仍然受到MI节点周围介质电学性质变化的显著影响,例如由于土壤湿度的变化。为最坏情况(例如,高土壤湿度)设计MI系统是一种战略方法,但它可能会显著减少应用带宽。因此,动态频率自适应对于MI-WUSNs具有均衡鲁棒性和更高带宽的潜力。本文针对MI-WUSN节点根据介质条件选择合适工作频率的优化问题,提出了一种新的设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategic frequency adaptation for mid-range magnetic induction-based Wireless Underground Sensor Networks
Some classes of sensing applications target scenarios where the overall system, including antenna and energy sub-system, is placed under the ground, through concrete, or under-the-debris (disaster scenario). A real-time soil moisture sensing system deployed at the root zone of a crop area for precise irrigation and an oil pipeline leak detection (PLD) system are particular examples of interest discussed in this work. Communication solutions for these scenarios have been recently investigated in the Wireless Underground Sensor Networks (WUSN) literature and magnetic induction (MI) technology is usually regarded as the best candidate for low-power and mid-range (i.e., 15..30m) wireless underground communication. Nonetheless, underground MI systems are still significantly impacted by changes at the electrical properties of the medium surrounding the MI nodes, such as due to the soil moisture variability. The design of a MI system for the worst-case scenario (e.g., high soil moisture) is a strategic approach but it may significantly reduce the application bandwidth. Therefore, the dynamic frequency adaptation has the potential of balancing robustness and higher bandwidth for MI-WUSNs. In this work, a novel design procedure is proposed for the optimization problem of selecting the proper operational frequency for MI-WUSN nodes according to the medium conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信