具有ILAO*和指数效用函数的风险敏感概率规划

Elthon Manhas de Freitas, K. V. Delgado, Valdinei Freire
{"title":"具有ILAO*和指数效用函数的风险敏感概率规划","authors":"Elthon Manhas de Freitas, K. V. Delgado, Valdinei Freire","doi":"10.5753/ENIAC.2018.4434","DOIUrl":null,"url":null,"abstract":"Markov Decision Process (MDP) has been used very efficiently to solve sequential decision-making problems. However, there are problems in which dealing with the risks of the environment to obtain a reliable result is more important than minimizing the total expected cost. MDPs that deal with this type of problem are called risk-sensitive Markov decision processes (RSMDP). In this paper we propose an efficient heuristic search algorithm that allows to obtain a solution by evaluating only the relevant states to reach the goal states starting from an initial state.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Risk Sensitive Probabilistic Planning with ILAO* and Exponential Utility Function\",\"authors\":\"Elthon Manhas de Freitas, K. V. Delgado, Valdinei Freire\",\"doi\":\"10.5753/ENIAC.2018.4434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov Decision Process (MDP) has been used very efficiently to solve sequential decision-making problems. However, there are problems in which dealing with the risks of the environment to obtain a reliable result is more important than minimizing the total expected cost. MDPs that deal with this type of problem are called risk-sensitive Markov decision processes (RSMDP). In this paper we propose an efficient heuristic search algorithm that allows to obtain a solution by evaluating only the relevant states to reach the goal states starting from an initial state.\",\"PeriodicalId\":152292,\"journal\":{\"name\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ENIAC.2018.4434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

马尔可夫决策过程(MDP)已被非常有效地用于解决序列决策问题。然而,在一些问题中,处理环境风险以获得可靠的结果比最小化总预期成本更重要。处理这类问题的mdp称为风险敏感马尔可夫决策过程(RSMDP)。在本文中,我们提出了一种有效的启发式搜索算法,允许通过仅评估相关状态以从初始状态开始到达目标状态来获得解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk Sensitive Probabilistic Planning with ILAO* and Exponential Utility Function
Markov Decision Process (MDP) has been used very efficiently to solve sequential decision-making problems. However, there are problems in which dealing with the risks of the environment to obtain a reliable result is more important than minimizing the total expected cost. MDPs that deal with this type of problem are called risk-sensitive Markov decision processes (RSMDP). In this paper we propose an efficient heuristic search algorithm that allows to obtain a solution by evaluating only the relevant states to reach the goal states starting from an initial state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信