Elthon Manhas de Freitas, K. V. Delgado, Valdinei Freire
{"title":"具有ILAO*和指数效用函数的风险敏感概率规划","authors":"Elthon Manhas de Freitas, K. V. Delgado, Valdinei Freire","doi":"10.5753/ENIAC.2018.4434","DOIUrl":null,"url":null,"abstract":"Markov Decision Process (MDP) has been used very efficiently to solve sequential decision-making problems. However, there are problems in which dealing with the risks of the environment to obtain a reliable result is more important than minimizing the total expected cost. MDPs that deal with this type of problem are called risk-sensitive Markov decision processes (RSMDP). In this paper we propose an efficient heuristic search algorithm that allows to obtain a solution by evaluating only the relevant states to reach the goal states starting from an initial state.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Risk Sensitive Probabilistic Planning with ILAO* and Exponential Utility Function\",\"authors\":\"Elthon Manhas de Freitas, K. V. Delgado, Valdinei Freire\",\"doi\":\"10.5753/ENIAC.2018.4434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov Decision Process (MDP) has been used very efficiently to solve sequential decision-making problems. However, there are problems in which dealing with the risks of the environment to obtain a reliable result is more important than minimizing the total expected cost. MDPs that deal with this type of problem are called risk-sensitive Markov decision processes (RSMDP). In this paper we propose an efficient heuristic search algorithm that allows to obtain a solution by evaluating only the relevant states to reach the goal states starting from an initial state.\",\"PeriodicalId\":152292,\"journal\":{\"name\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ENIAC.2018.4434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Risk Sensitive Probabilistic Planning with ILAO* and Exponential Utility Function
Markov Decision Process (MDP) has been used very efficiently to solve sequential decision-making problems. However, there are problems in which dealing with the risks of the environment to obtain a reliable result is more important than minimizing the total expected cost. MDPs that deal with this type of problem are called risk-sensitive Markov decision processes (RSMDP). In this paper we propose an efficient heuristic search algorithm that allows to obtain a solution by evaluating only the relevant states to reach the goal states starting from an initial state.