一种数据高效的一次性文本分类方法

H. Wang, Mu Liu, Katsushi Yamashita, Yasuhiro Okamoto, Satoshi Yamada
{"title":"一种数据高效的一次性文本分类方法","authors":"H. Wang, Mu Liu, Katsushi Yamashita, Yasuhiro Okamoto, Satoshi Yamada","doi":"10.1109/CCAI55564.2022.9807798","DOIUrl":null,"url":null,"abstract":"In this paper, we propose BiGBERT (Binary Grouping BERT), a data-efficient training method for one-shot text classification. With the idea of One-vs-Rest method, we designed an extensible output layer for BERT, which can increase the usability of the training data. To evaluate our approach, we conducted extensive experiments on four celebrated text classification datasets, and reform these datasets into one-shot training scenario, which is approximately equal to the situation of our commercial datasets. The experiment result shows our approach achieves 54.9% in 5AbstractsGroup dataset, 40.2% in 20NewsGroup dataset, 57.0% in IMDB dataset, and 33.6% in TREC dataset. Overall, compare to the baseline BERT, our proposed method achieves 2.3% $\\sim$ 28.6% improved in accuracy. This result shows BiGBERT is stable and have significantly improved on one-shot text classification.","PeriodicalId":340195,"journal":{"name":"2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-Efficient Method for One-Shot Text Classification\",\"authors\":\"H. Wang, Mu Liu, Katsushi Yamashita, Yasuhiro Okamoto, Satoshi Yamada\",\"doi\":\"10.1109/CCAI55564.2022.9807798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose BiGBERT (Binary Grouping BERT), a data-efficient training method for one-shot text classification. With the idea of One-vs-Rest method, we designed an extensible output layer for BERT, which can increase the usability of the training data. To evaluate our approach, we conducted extensive experiments on four celebrated text classification datasets, and reform these datasets into one-shot training scenario, which is approximately equal to the situation of our commercial datasets. The experiment result shows our approach achieves 54.9% in 5AbstractsGroup dataset, 40.2% in 20NewsGroup dataset, 57.0% in IMDB dataset, and 33.6% in TREC dataset. Overall, compare to the baseline BERT, our proposed method achieves 2.3% $\\\\sim$ 28.6% improved in accuracy. This result shows BiGBERT is stable and have significantly improved on one-shot text classification.\",\"PeriodicalId\":340195,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAI55564.2022.9807798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAI55564.2022.9807798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了BiGBERT(二进制分组BERT),这是一种数据高效的一次性文本分类训练方法。利用One-vs-Rest方法的思想,为BERT设计了一个可扩展的输出层,提高了训练数据的可用性。为了评估我们的方法,我们在四个著名的文本分类数据集上进行了大量的实验,并将这些数据集改造成一次训练场景,这与我们的商业数据集的情况大致相同。实验结果表明,该方法在5AbstractsGroup数据集上的准确率为54.9%,在20NewsGroup数据集上的准确率为40.2%,在IMDB数据集上的准确率为57.0%,在TREC数据集上的准确率为33.6%。总体而言,与基线BERT相比,我们提出的方法的准确率提高了2.3% $\sim$ 28.6% $。结果表明,BiGBERT是稳定的,并且在单次文本分类上有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data-Efficient Method for One-Shot Text Classification
In this paper, we propose BiGBERT (Binary Grouping BERT), a data-efficient training method for one-shot text classification. With the idea of One-vs-Rest method, we designed an extensible output layer for BERT, which can increase the usability of the training data. To evaluate our approach, we conducted extensive experiments on four celebrated text classification datasets, and reform these datasets into one-shot training scenario, which is approximately equal to the situation of our commercial datasets. The experiment result shows our approach achieves 54.9% in 5AbstractsGroup dataset, 40.2% in 20NewsGroup dataset, 57.0% in IMDB dataset, and 33.6% in TREC dataset. Overall, compare to the baseline BERT, our proposed method achieves 2.3% $\sim$ 28.6% improved in accuracy. This result shows BiGBERT is stable and have significantly improved on one-shot text classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信