低延迟全播稀疏随机线性网络编码

M. Graham, A. Ganesh, R. Piechocki
{"title":"低延迟全播稀疏随机线性网络编码","authors":"M. Graham, A. Ganesh, R. Piechocki","doi":"10.1109/ALLERTON.2019.8919833","DOIUrl":null,"url":null,"abstract":"Numerous applications require the sharing of data from each node on a network with every other node. In the case of Connected and Autonomous Vehicles (CAVs), it will be necessary for vehicles to update each other with their positions, manoeuvring intentions, and other telemetry data, despite shadowing caused by other vehicles. These applications require scalable, reliable, low latency communications, over challenging broadcast channels. In this article, we consider the allcast problem, of achieving multiple simultaneous network broadcasts, over a broadcast medium. We model slow fading using random graphs, and show that an allcast method based on sparse random linear network coding can achieve reliable allcast in a constant number of transmission rounds. We compare this with an uncoded baseline, which we show requires O(log(n)) transmission rounds. We justify and compare our analysis with extensive simulations.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Random Linear Network Coding For Low Latency Allcast\",\"authors\":\"M. Graham, A. Ganesh, R. Piechocki\",\"doi\":\"10.1109/ALLERTON.2019.8919833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous applications require the sharing of data from each node on a network with every other node. In the case of Connected and Autonomous Vehicles (CAVs), it will be necessary for vehicles to update each other with their positions, manoeuvring intentions, and other telemetry data, despite shadowing caused by other vehicles. These applications require scalable, reliable, low latency communications, over challenging broadcast channels. In this article, we consider the allcast problem, of achieving multiple simultaneous network broadcasts, over a broadcast medium. We model slow fading using random graphs, and show that an allcast method based on sparse random linear network coding can achieve reliable allcast in a constant number of transmission rounds. We compare this with an uncoded baseline, which we show requires O(log(n)) transmission rounds. We justify and compare our analysis with extensive simulations.\",\"PeriodicalId\":120479,\"journal\":{\"name\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2019.8919833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多应用程序需要从网络上的每个节点与其他节点共享数据。在联网和自动驾驶汽车(cav)的情况下,车辆有必要相互更新自己的位置、操纵意图和其他遥测数据,尽管其他车辆会造成阴影。这些应用程序需要可扩展的、可靠的、低延迟的通信,通过具有挑战性的广播信道。在本文中,我们考虑在广播媒体上实现多个同时网络广播的全播问题。利用随机图对慢衰落进行建模,证明了一种基于稀疏随机线性网络编码的全播方法可以在恒定的传输轮数内实现可靠的全播。我们将其与未编码的基线进行比较,我们显示它需要O(log(n))个传输回合。我们用大量的模拟来证明和比较我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Random Linear Network Coding For Low Latency Allcast
Numerous applications require the sharing of data from each node on a network with every other node. In the case of Connected and Autonomous Vehicles (CAVs), it will be necessary for vehicles to update each other with their positions, manoeuvring intentions, and other telemetry data, despite shadowing caused by other vehicles. These applications require scalable, reliable, low latency communications, over challenging broadcast channels. In this article, we consider the allcast problem, of achieving multiple simultaneous network broadcasts, over a broadcast medium. We model slow fading using random graphs, and show that an allcast method based on sparse random linear network coding can achieve reliable allcast in a constant number of transmission rounds. We compare this with an uncoded baseline, which we show requires O(log(n)) transmission rounds. We justify and compare our analysis with extensive simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信